# DRAFT NOISE STUDY REPORT 

for<br>Project Development and Environment (PD\&E) Study<br>Midway Road/CR 712 from Glades Cut Off Road to Selvitz Road<br>Milepost 5.813 to 7.405<br>St. Lucie County, Florida

Financial Project ID: 231440-3-22-01
Federal Aid Number: TBD
ETDM Number: 14177

Prepared for:


Florida Department of Transportation District IV
3400 West Commercial Boulevard
Fort Lauderdale, Florida 33309

# DRAFT <br> NOISE STUDY REPORT 

for

Project Development and Environment (PD\&E) Study Midway Road/CR 712 from Glades Cut Off Road to Selvitz Road Milepost 5.813 to 7.405
St. Lucie County, Florida
Financial Project ID: 231440-3-22-01
Federal Aid Number: TBD
ETDM Number: 14177

Prepared for:


Florida Department of Transportation
District IV
3400 West Commercial Boulevard
Fort Lauderdale, Florida 33309

October 2016

Prepared by:
Bernard Kinney Associates, Inc.

## TABLE OF CONTENTS

Section Page
1.0 INTRODUCTION ..... 1
2.0 PROJECT DESCRIPTION ..... 1
3.0 PROJECT ALTERNATIVES ..... 3
4.0 LAND USES ..... 6
4.1 EXISTING LAND USES ..... 6
4.2 FUTURE LAND USES ..... 7
5.0 METHODOLOGY ..... 7
5.1 NOISE METRICS ..... 8
5.2 TRAFFIC DATA ..... 8
5.3 NOISE ABATEMENT CRITERIA ..... 9
5.4 NOISE ABATEMENT MEASURES ..... 9
5.4.1 TRAFFIC MANAGEMENT. ..... 9
5.4.2 ALIGNMENT MODIFICATIONS ..... 9
5.4.3 BUFFER ZONES ..... 10
5.4.4 NOISE BARRIER PLACEMENT ..... 12
6.0 TRAFFIC NOISE ANALYSIS ..... 12
6.1 MODEL VALIDATION ..... 15
6.1.1 METHODOLOGY ..... 15
6.1.2 METEOROLOGICAL CONDITIONS ..... 16
6.1.3 FIELD MEASUREMENT DATA ..... 16
6.1.4 MODEL VALIDATION RESULTS ..... 17
6.2 PREDICTED NOISE LEVELS AND ABATEMENT ANALYSIS ..... 17
6.2.1 DATA SOURCES ..... 17
6.2.2 PREDICTED NOISE LEVELS ..... 19
6.2.3 NOISE SENSITIVE AREA 1 ..... 19
6.2.4 NOISE SENSITIVE AREA 2 ..... 19
6.2.5 NOISE SENSITIVE AREA 3 ..... 19
6.2.6 NOISE SENSITIVE AREA 4 ..... 19
6.2.7 NOISE SENSITIVE AREA 5 ..... 22
6.2.8 NOISE IMPACT ANALYSIS ..... 22
7.0 CONCLUSIONS ..... 24
8.0 CONSTRUCTION NOISE AND VIBRATION ..... 25
9.0 COMMUNITY COORDINATION ..... 26
10.0 REFERENCES ..... 27

## List of Figures

Figure 1 - Project Location Map
Figure 2 - Typical Noise Levels

## List of Tables

Table 1 - Noise Abatement Criteria (NAC)
Table 2 - Noise Receptor Location and Description Summary
Table 3 - Acoustical and Meteorological Instrumentation
Table 4 - TNM 2.5 Model Validation Results
Table 5 - TNM 2.5 Predicted Noise Levels
Table 6 - Noise Barrier Analysis Results

## List of Appendices

Appendix A - Proposed Typical Sections<br>Appendix B - Traffic Data for Noise Study<br>Appendix C - Noise Receptor Aerials<br>Appendix D - Noise Measurement Data Sheets<br>Appendix E - Noise and Vibration Sensitive Sites<br>Appendix F - Noise Contour Table

## EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT), District Four, has conducted a noise study for the Midway Road study corridor which extends from Glades Cut Off Road to Selvitz Road in St. Lucie County. The Noise Study Report is being prepared as a part of the proposed roadway improvements which will result in a four (4) lane divided urban roadway with the replacement of the existing bridge. This study utilized the Traffic Noise Model (TNM) version 2.5 which is the most current model available for the prediction of highway traffic noise levels. Traffic noise impacts were evaluated for potential noise sensitive sites developed prior to the project's Date of Public Knowledge (DPK). Based upon the DPK, Activity Category B and C land uses were evaluated for potential noise impacts. The Noise Study Report was developed based upon the current regulatory criteria contained in Chapter 17 Noise (July 27, 2016) and the Traffic Noise Modeling and Analysis Practitioners Handbook, January 1, 2016. Additionally, the current regulatory criteria contained in the New Final Rule (23 CFR Part 772) dated July 13, 2010 is in compliance with the Department's Noise Policy. The study corridor is approximately 1.6 miles in length. The noise study evaluated one (1) Build Alternative (Build Alternative 2) and the No-Build Alternative. No other alternatives were evaluated.

The noise study identified five (5) noise sensitive areas which were evaluated for potential noise impacts for the following conditions, Existing Year 2015 Condition, No-Build Alternative Design Year 2040 Condition, and the Build Alternative 2 Design Year 2040 Condition. The noise sensitive areas evaluated are representative of one hundred and ten (110) noise sensitive receptor locations. The computer modeled noise receptor locations are as follows: the residential areas bordering the south side of the corridor, the residential areas bordering the north side of the study corridor, and the New Horizons facility bordering the north side of the corridor. The potential noise sensitive locations identified in this report are representative of Activity Category B and C locations. Activity Category B and C locations require potential noise abatement measures for computer predicted sound levels which approach or exceed $66 \mathrm{~dB}(\mathrm{~A})$.

The traffic noise levels predicted at the one hundred and ten (110) noise sensitive receptor locations under evaluation approached or exceeded the FDOT Noise Abatement Criteria (NAC) at one (1) residential area; therefore, potential noise abatement measures were evaluated.

The traffic noise levels predicted at the noise sensitive receptor locations under evaluation did not approach or exceed the FDOT NAC at Noise Sensitive Area 1, Noise Sensitive Area 2, Noise Sensitive Area 3, and Noise Sensitive Area 5; therefore, potential noise abatement measures were not evaluated.

Potential noise abatement measures were evaluated at one (1) location (Noise Sensitive Area 4) on the southeast side of the study corridor west of Selvitz Road. Potential noise barrier placement (BW-1S) was evaluated for the residential dwellings identified as R84S and R85S.

Additionally, two (2) neighboring residential dwellings (R84AS and R85AS) were evaluated. The impacted (benefitted) receptors include three (3) residential dwellings. Additionally, a single residential dwelling was not impacted, however; it was benefitted by the computer modeled noise barrier (BW-1S).

A noise barrier approximately 500 feet long and 10 feet high was determined to meet the Department's feasibility factor (Noise Reduction Factor) and reasonableness factor (Noise Reduction Design Goal). The cost of the noise barrier is approximately $\$ 150,000.00$. The cost per benefitted receptor is approximately $\$ 37,500.00$. The cost of the noise barrier meets the Department's Cost Reasonableness Factor of \$42,000.00 per benefitted receptor.

The feasibility factor associated with a barriers noise reduction is the Noise Reduction Factor. FDOT's Noise Reduction Factor requires that two (2) or more impacted receptors achieve a $5 \mathrm{~dB}(\mathrm{~A})$ reduction or greater in order to be considered feasible. The reasonableness factor associated with a barriers noise reduction is the Noise Reduction Design Goal. FDOT's Noise Reduction Design Goal requires that one (1) or more benefitted receptors achieve a $7 \mathrm{~dB}(\mathrm{~A})$ reduction or greater in order to be considered reasonable. The Cost Reasonableness Factor established by the Department is based upon a unit cost of $\$ 30$ per square foot for noise barrier placement. FDOT's Cost Reasonableness Factor is based on a current cost allowance of $\$ 42,000$ per benefitted receptor.

### 1.0 INTRODUCTION

The Florida Department of Transportation (FDOT), District Four, is currently conducting a Project Development and Environment (PD\&E) Study for the Midway Road project corridor which is centrally located in the eastern part of St. Lucie County, Florida, and is owned and maintained by St. Lucie County. The project corridor extends approximately 1.6 miles along Midway Road (Roadway ID 94530000), from Glades Cut Off Road (Mile Post 5.813) to Selvitz Road (Mile Post 7.405). The project ties into the existing four-lane section to the west of Glades Cut Off Road and to a four-lane segment east of Selvitz Road currently under construction (St. Lucie County Project Number 06-18). The project corridor is located in unincorporated St. Lucie County but is on the northern border to the City of Port St. Lucie. The project location map is depicted in Figure 1.

Traffic noise impacts were evaluated for potential noise sensitive locations identified in this study. Based upon the existing land uses, Activity Category B and C noise sensitive locations were evaluated. Five (5) noise sensitive areas were identified adjacent to the study corridor. The noise sensitive areas evaluated are representative of one hundred and ten (110) noise sensitive receptor locations. The computer modeled noise receptor locations are as follows: the residential areas bordering the south side of the corridor, the residential areas bordering the north side of the study corridor, and the New Horizons facility bordering the north side of the corridor.

The noise study was developed based upon the current regulatory criteria contained in Part 2, Chapter 17 Noise (July 27, 2016), of the PD\&E Manual, and the Traffic Noise Modeling and Analysis Practitioners Handbook dated January 1, 2016. Additionally, the current regulatory criteria contained in the New Final Rule (23 CFR Part 772) dated July 13, 2010 is in compliance with the Departments Noise Policy. A summary of the noise analysis may be found in the Type II Categorical Exclusion (CE) document for the project available under separate cover.

### 2.0 PROJECT DESCRIPTION

Midway Road is a major east-west roadway that provides a vital connection for residents and commuters to and from I-95 and to the commercial areas along US 1. Within the project limits, Midway Road is a four-lane divided roadway from Glades Cut Off Road to Torino Parkway with a design speed of 40 miles per hour (mph). From Torino Parkway until just west of the Selvitz Road intersection, Midway Road is a two-lane undivided roadway with a design speed of 45 mph . The posted speed limit throughout the project limits is 45 mph . Midway Road is functionally classified as an Urban Principal Arterial and is designated as a hurricane evacuation route by the Florida Division of Emergency Management. The existing roadway typical section consists of two 12-foot lanes, one in each direction, and the existing right-ofway varies with a minimum width of 103 feet and a maximum width of 153 feet.


The land uses consist of residential, commercial, government, and industrial facilities, including Tropicana Products, Inc.; CEMEX; Packers of Indian River Ltd.; U.S. Post Office; St. Lucie County Sheriff's Office; and New Horizons of the Treasure Coast, Inc.

The study corridor includes a bridge (ID 940050) over Florida's Turnpike (SR 91). The Florida East Coast (FEC) Railroad traverses the corridor by running adjacent and parallel to Glades Cut Off Road. Canal 103, which was previously part of the St. Lucie Water Control District, but has since been transferred to St. Lucie County, is the principal receiving water body for the project area and conveys stormwater from the west side of Florida's Turnpike through an existing concrete box culvert under the Turnpike. The canal runs parallel along the south side of Midway Road to east of Selvitz Road and then continues southeasterly to discharge into the North Fork of the St. Lucie River. The North Fork ultimately outfalls into the St. Lucie Aquatic Preserve, which is designated as an Outstanding Florida Water. It is the main collector water body in St. Lucie County and discharges into the Indian River Lagoon. The canal, along with the adjacent vegetative buffer, provides a physical separation between the residential homes on the south side of the canal and the roadway on the north side of the canal.

### 3.0 PROJECT ALTERNATIVES

The Midway Road PD\&E Study from Glades Cut Off Road to Selvitz Road evaluates alternatives to widen the existing road from two to four lanes within the project limits in order to satisfy existing and future traffic demand and capacity needs. This study also considers pedestrian, bicycle, and transit facilities; improvements to freight mobility; operational improvements and access management into some commercial businesses along the project corridor. Right-of-way requirements were evaluated for the roadway widening and other improvements listed above. Additional right-of-way requirements were also evaluated for offsite ponds in order to meet stormwater management requirements.

Typical Sections and Alignments

## Build Alternative 1 Typical Section

Build Alternative 1 maintains Canal 103 in its current location along the south side of Midway Road. The typical section includes the full reconstruction of Midway Road and provides two 11-foot travel lanes in each direction separated by a 22-foot median. Seven-foot buffered bike lanes would be provided in each direction located adjacent to the outside travel lanes. Type $F$ curb and gutter is used along the inside and outside lanes and collects stormwater runoff which is then directed to stormwater retention ponds. A six-foot-wide sidewalk would be constructed on the north side of the roadway, and a 12-foot-wide shared-use path would be constructed along the south side.

An 18-foot buffer would be provided between the shared-use path and the Canal 103 front slope. The buffer provides space for canal maintenance equipment and also eliminates the need to install guardrail to protect the canal. A new bridge structure over Florida's Turnpike will be constructed to accommodate the roadway typical section features. The design speed for this typical section would be 45 mph .

## Build Alternative 1 Alignment

The horizontal alignment of Build Alternative 1 will shift the roadway to the north beginning east of the FEC Railroad and then crossing through a series of back to back normal crown curves (design speed (DS) $=45 \mathrm{mph}$ ). The alignment will then maintain a constant tangential path until it approaches the project terminus. There, it will again go through a series of back to back normal crown curves (DS = 45 mph ) to shift the alignment back to the south aligning with Midway Road east of Selvitz Road. The Build Alternative 1 typical section is shown in Appendix A.

The vertical alignment will match the existing roadway elevation across the FEC Railroad crossing. From the FEC Railroad crossing to Florida's Turnpike, it will raise approximately one to two feet to provide three-feet of base clearance to the seasonal high water table (SHWT). From Florida's Turnpike to Post Office Road, the road will raise roughly 0.5 feet or less. From Post Office Road to Selvitz Road, the vertical alignment will match the existing road although a saw-tooth profile will need to be created to provide gutter grade. Longitudinal grades will consist of a minimum $0.30 \%$ slope to maintain gutter grades for drainage purposes. The roadway will raise approximately 22 feet as it crosses Florida's Turnpike to accommodate the bridge deck and beams while maintaining a minimum of 16.5 -foot vertical clearance over the Turnpike travel lanes. The rise will be a series of back to back vertical curves - sag, crest, sag - which maintain minimum K-values (DS = 45 mph; Kcrest = 98; Ksag $=79$ ) ensuring proper sight distance.

## Build Alternative 2 Typical Section

The Build Alternative 2 typical section includes the full reconstruction of Midway Road and provides two 11-foot travel lanes in each direction separated by a 22-foot median. Seven-foot buffered bike lanes would be provided in each direction located adjacent to the outside travel lanes. Type F curb and gutter is used along the inside and outside lanes and collects stormwater runoff which is then directed to stormwater retention ponds. A six-foot-wide sidewalk would be constructed on the north side of the roadway, and a 12-foot-wide shareduse path would be constructed along the south side of the road. Canal 103 will be enclosed in an 11 -foot by 5 -foot concrete box culvert which will be located along the south side of Midway Road. This alternative will also include a 10 -foot-wide landscape strip which will incorporate both existing native vegetation as well as supplemental plantings to screen the residential properties adjacent to the south side of the roadway.

A new bridge structure over Florida's Turnpike will be constructed to accommodate the roadway typical section features. The design speed for this typical section would be 45 mph .

## Build Alternative 2 Alignment

The horizontal alignment of Build Alternative 2 will shift the roadway to the south beginning east of the FEC Railroad through a series of back to back normal crown curves (DS $=45$ mph ) minimizing impacts to the CEMEX plant located on the north side of the roadway. The alignment will then maintain a tangential path with two deflections ( $<01^{\circ} 00^{\prime} 00^{\prime \prime}$ ) located west of Florida's Turnpike. As the project approaches Selvitz Road, it will again go through a series of back to back normal crown curves ( $\mathrm{DS}=45 \mathrm{mph}$ ) to shift the roadway to the south aligning with Midway Road east of Selvitz Road. The Build Alternative 2 typical section is shown in

## Appendix A.

The vertical alignment for Build Alternative 2 will match the existing roadway elevation across the FEC Railroad crossing. From the FEC Railroad crossing to Florida's Turnpike, it will raise approximately one to two feet to provide three feet of base clearance to the SHWT. From Florida's Turnpike to Post Office Road, the road will raise roughly 0.5 feet or less. From Post Office Road to Selvitz Road, the vertical alignment will match the existing road although a saw-tooth profile will need to be created to provide gutter grade. Longitudinal grades will consist of a minimum $0.03 \%$ slope to maintain minimum gutter grades for drainage purposes. The roadway will raise approximately 22 feet as it crosses Florida's Turnpike to accommodate the bridge deck and beams while maintaining a minimum of 16.5 -foot vertical clearance over Florida's Turnpike travel lanes. The rise will be a series of back to back vertical curves - sag, crest, sag - which maintain minimum K-values (DS = 45 mph ; Kcrest = 98; Ksag = 79) ensuring proper sight distance.

## Recommended Alternative

Subsequent to the June 28, 2016 alternatives public workshop for the project, a meeting was held with representatives from FDOT District 4, St, Lucie County, and St. Lucie Transportation Planning Organization to discuss the selection of the recommended alternative. Advantages and disadvantages of Build Alternative 1 and Build Alternative 2 were presented and discussed. The advantages and disadvantages of both alternatives are listed below.

Build Alternative 1 - Canal Avoidance
Advantages:

- Lower engineering, right-of-way acquisition, and construction costs
- Five 5 comment forms were received at the alternatives public workshop in favor of Build Alternative 1 compared with 4 comment forms received in favor of Build Alternative 2

Disadvantages:

- $\quad$ Sixteen properties are impacted compared with nine parcels for Build Alternative 2
- Higher wetland impacts than Build Alternative 2
- Build Alternative 1 is not preferred by representatives from St. Lucie County, Port St. Lucie, Sherriff's Office, New Horizons, and St. Lucie Public Schools
- FDOT does not have eminent domain rights on all required properties needed for construction

Build Alternative 2 - Box Culvert
Advantages:

- $\quad$ Nine properties are impacted compared with 16 parcels for Build Alternative 1
- Build Alternative 2 preferred by representatives from St. Lucie County, Port St. Lucie, Sherriff's Office, New Horizons, and St. Lucie Public Schools
- Build Alternative 2 maintains the corridor look/consistency established with the Midway Road widening from Selvitz Road to 25th Street
- Build Alternative 2 has Lower wetland impacts
- FDOT has eminent domain rights on all required properties needed for construction

Disadvantages:

- Higher costs
- Four comment forms were received at the alternative public workshop in favor of Build Alternative 2 compared with five forms received in favor of Build Alternative 1

Based on the advantages and disadvantages listed above, Build Alternative 2- Box culvert was selected as the recommended alternative.

### 4.0 LAND USES

### 4.1 EXISTING LAND USES

The existing land uses along the project corridor include single family residential areas adjacent to the south side of the corridor. The north side of the corridor is comprised of single family residential areas, a medical treatment facility, commercial areas, and industrial areas. There are areas of vacant land on both sides of the study corridor in which development could occur. The areas bordering the side of the study corridor appear to support potential residential development.

### 4.2 FUTURE LAND USES

Future land use in the study area is expected to remain consistent with the existing land use characteristics. The south side of the study corridor is fully developed with limited areas in which future residential development could occur. There are vacant tracts of land on the north side of the study corridor in which future development could occur.

Should any noise sensitive development occur, the contents of this report should be considered before approving any potential noise sensitive land uses directly adjacent to the Midway Road study corridor limits from Glades Cut Off Road to Selvitz Road in St. Lucie County.

FDOT is not responsible for future noise abatement measures for parcels or locations with building permits approved after the project's Date of Public Knowledge (DPK). Active building permits for potential noise sensitive land uses within the study corridor limits were verified on August 15, 2016. At that time, there were no potential noise sensitive sites identified for the purposes of inclusion in this report. A second active building permit request received on September 22, 2016, verified that there were no additional active building permits adjacent to the study corridor. Since the study corridor is within the limits of St. Lucie County and the City of Port St. Lucie, both Building Departments were contacted for the purposes of active building permit identification. The City of Port St. Lucie did not respond to the request for building permit status. Follow-up contact should take place during final design.

### 5.0 METHODOLOGY

The noise study was developed based upon the current regulatory criteria contained in Part 2, Chapter 17 Noise (July 27, 2016), of the PD\&E Manual and the Traffic Noise Modeling and Analysis Practitioners Handbook dated January 1, 2016. Additionally, the current regulatory criteria contained in the New Final Rule (23 CFR Part 772) dated July 13, 2010 is reflected in the Departments Noise Policy. The technical criteria are provided in the Federal Regulations Title 23, Part 772 (23 CFR Part 772) entitled "Procedures for Abatement of Highway Traffic Noise and Construction Noise" (1). Chapter 335.17 of the Florida Statute requires the use of 23 CFR Part 772 in the noise impact assessment process regardless of funding, and the FDOT PD\&E Manual, Part 2, Chapter 17 Noise (July 27, 2016) (2). Additionally, technical guidance is provided in the Traffic Noise Modeling and Analysis Practitioners Handbook, January 1, 2016 (3).

Computer predicted noise levels were produced using the Federal Highway Administration (FHWA) Traffic Noise Model (TNM) version 2.5. The project alternatives evaluated in this noise study consist of one (1) Build Alternative (Build Alternative 2) and the No-Build Alternative. Traffic noise levels were predicted for the Existing Year Condition 2015 and the Design Year 2040 No-Build and Build Alternative conditions. No other alternatives were evaluated.

No consideration was given to potential noise sensitive land uses established after the DPK. Both the interior (where applicable) and exterior areas of potential noise sensitive locations were evaluated for potential noise impacts.

FDOT is not responsible for future noise abatement measures for parcels or locations with building permits approved after the DPK. The DPK is the approval date of the Type II CE document.

The Noise Abatement Criteria (NAC) activity categories for the noise sensitive areas evaluated include Activity Category B and C locations. The Activity Category B locations represent the residential areas adjacent to Midway Road and the Activity Category C locations represent the New Horizons facility adjacent to the north side of Midway Road. No other activity categories were identified as of the date of this report.

### 5.1 NOISE METRICS

The noise level descriptor used by FDOT will be level equivalent (LEQ). LEQ is the equivalent steady-state sound level which in a stated period of time contains the same acoustic energy as the time-varying sound level during the same time period, with LEQ (h) being the hourly value of LEQ. Title 23 CFR Part 772 specifies that either the LEQ(h) or L10(h) metric, but not both, may be used on a project. Consistent with this requirement, the FDOT elects to use the LEQ(h) metric.

The noise levels developed for this analysis are expressed in decibels (dB) using an " $A$ "scale $[\mathrm{dB}(\mathrm{A})]$ weighting. This scale most closely approximates the response characteristics of the human ear.

### 5.2 TRAFFIC DATA

Predicted traffic noise levels are primarily dependent on traffic volumes, vehicle mix, and vehicle speeds. The project traffic data developed for this study was prepared by the project traffic engineer and approved by the Department. The project traffic data was developed for the Midway Road corridor for the following conditions: Existing Year 2015 Condition and the Design Year 2040 No-Build and Build Alternative Condition (Build Alternative 2). Traffic volumes representative of Level of Service (LOS) C or demand (whichever is less) was used as input data for the noise study and is consistent with the Traffic Noise Modeling and Analysis Practitioners Handbook dated January 1, 2016. This represents the highest traffic volume traveling at the highest average speed for this project. Such conditions typically generate the highest noise levels at a given site during a normal day. A review of the traffic data for this study determined that the project traffic data (LOS C and demand) would be used for input into TNM version 2.5. The approved project traffic data developed for this study is presented in Appendix B.

### 5.3 NOISE ABATEMENT CRITERIA

Noise sensitive sites are defined in the PD\&E Manual as any property (owner occupied, rented or leased) where frequent exterior human use occurs and where a lowered noise level would be of benefit. Consistent with the guidance provided in the PD\&E Manual, unless the area of exterior frequent use is identified elsewhere, residential receptor sites were placed at the edge of the dwelling unit closest to the major traffic noise source as dictated by professional judgment. Examples of common outdoor and indoor activities and their associated noise levels are presented in Figure 2.

The FHWA has established specific noise levels for both exterior and interior locations where frequent human activity could occur. These noise levels vary by activity category and are presented in Table 1.

The FDOT has also established an approach criterion based upon these activity categories. The FDOT approach criteria are one (1) decibel below the FHWA criteria.

Potential noise abatement measures must be considered for all activity categories (except Activity Category F and G) which either meet or exceed the FDOT NAC for a specific category or experience a substantial noise increase as a direct result of a transportation improvement project. The FDOT defines a substantial increase as $15 \mathrm{~dB}(\mathrm{~A})$ or more over the existing conditions. A substantial increase in traffic-related noise usually occurs for new alignment transportation projects. This study has identified that Activity Category B and C locations were present as of the date of this report.

### 5.4 NOISE ABATEMENT MEASURES

The traffic noise levels predicted at the one hundred and ten (110) noise sensitive receptor locations under evaluation approached or exceeded the FDOT NAC at one (1) residential area (Noise Sensitive Area 4); therefore, potential noise abatement measures were evaluated. A summary of the potential noise abatement measures considered by the Department are presented below.

### 5.4.1 Traffic Management

Traffic management techniques are considered an acceptable noise abatement measure by the FHWA; however, such measures may be difficult to implement. A review of the project traffic data does not support this technique as a viable choice.

### 5.4.2 Alignment Modifications

Alignment modifications are considered an effective noise abatement measure by the FHWA. Given the right-of-way limitations associated with the study corridor, this technique is not a viable choice.

### 5.4.3 Buffer Zones

Buffer zones are considered an effective noise abatement measure by the FHWA. Given the right-of-way limitations associated with the study corridor, this technique is not a viable choice. The noise contours developed for the noise study will assist local planning agencies in minimizing future traffic noise impacts adjacent to the study corridor by restricting future development in areas where future traffic noise impacts have been identified.

Figure 2 Typical Noise Levels

| COMMON OUTDOOR <br> ACTIVITIES | NOISE LEVEL $\mathrm{dB}(\mathrm{A})$ | COMMON INDOOR <br> ACTIVITIES |
| :---: | :---: | :---: |
| J et Fly-over at 1000 ft <br> Gas Lawn Mowerat 3 ft <br> Diesel Truck at 50 ft , at 50 mph <br> Noise Urban Area (Daytime) <br> Gas Lawn Mower at 100 ft <br> Commercial Area <br> Heavy Traffic at 300 ft <br> Quiet Urban Daytime <br> Quiet Urban Nighttime <br> Quiet Suburban Nighttime <br> Quiet Rural Nighttime <br> Lowest Threshold of Human Hearing | ---110--- <br> ---100--- <br> ---90--- <br> ---80--- <br> ---70--- <br> ---60--- <br> ---50--- <br> ---40--- <br> ---30--- <br> ---20--- <br> ---10--- <br> ---0--- | Rock Band <br> Food Blender at 1 m (3 ft) Garbage Disposal at 1 m (3 ft) <br> Vacuum Cleanerat 10 ft <br> Normal Speech at 3 ft <br> Large Business Office <br> Dishwasher Next Room <br> Theater, Large Conference Room (Background) <br> Library <br> Bedroom at Night, Concert Hall (Background) |
| Source: California Dept. of Transportation Technical Noise Supplement, Oct. 1998, Page 18. |  |  |

## Table 1

NOISE ABATEMENT CRITERIA (NAC)
[Hourly A-Weighted Sound Level-decibels (dB(A))]

| Activity <br> Category | Activity Leq(h) ${ }^{1}$ |  | Evaluation Location | Description of Activity Category |
| :---: | :---: | :---: | :---: | :---: |
|  | FHWA | FDOT |  |  |
| A | 57 | 56 | Exterior | Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose. |
| B2 | 67 | 66 | Exterior | Residential |
| $\mathrm{C}^{2}$ | 67 | 66 | Exterior | Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medic al facilities, parks, pic nic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreational areas, Section 4(f) sites, schools, television studios, trails, and trail crossings. |
| D | 52 | 51 | Interior | Auditoriums, day care centers, hospita ls, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios. |
| $\mathrm{E}^{2}$ | 72 | 71 | Exterior | Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D orF. |
| F | - | - | - | Agriculture, aiports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing. |
| G | - | - | - | Undeveloped lands that are not pemitted. |
| (Based on Table 1 of 23 CFR Part 772) <br> ${ }_{1}$ The Leq(h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measures. <br> ${ }^{2}$ Includes undeveloped lands permitted for this activity category. <br> Note: FDOT defines that a substantial noise increase occurs when the existing noise level is predicted to be exceeded by 15 decibels or more as a result of the transportation improvement project. When this occurs, the requirement for abatement consideration will be followed. |  |  |  |  |
|  |  |  |  |  |  |  |

### 5.4.4 Noise Barrier Placement

Potential noise barrier placement is the most effective noise abatement measure utilized by the Department. The Department has established feasibility and reasonableness factors which are used to determine the viability of potential noise barrier placement. The proposed noise barrier (BW-1S) is located on the south side of Midway Road and adjacent to receptors R84S and R85S. The noise barrier is located along the proposed right-of-way line.

The feasibility factor associated with a barriers noise reduction is the Noise Reduction Factor. FDOT's Noise Reduction Factor requires that two (2) or more impacted receptors achieve a $5 \mathrm{~dB}(\mathrm{~A})$ reduction or greater in order to be considered feasible. The reasonableness factor associated with a barriers noise reduction is the Noise Reduction Design goal. FDOT's Noise Reduction Design Goal requires that one (1) or more benefitted receptors achieve a $7 \mathrm{~dB}(\mathrm{~A})$ reduction or greater in order to be considered reasonable. The Cost Reasonableness Factor established by the Department is based upon a unit cost of $\$ 30$ per square foot for noise barrier placement. FDOT's Cost Reasonableness Factor is based on a current cost allowance of $\$ 42,000$ per benefitted receptor. The remaining feasibility and reasonableness factors consider the constructability and safety factors associated with potential noise barrier placement. Additionally, public input is also considered during this process.

### 6.0 TRAFFIC NOISE ANALYSIS

The noise study identified five (5) noise sensitive areas which were evaluated for potential noise impacts for the following conditions: Existing Year 2015 Condition, No-Build Alternative Design Year 2040 Condition, and Build Alternative 2 Design Year 2040 Condition. The noise sensitive areas evaluated are representative of one hundred and ten (110) noise sensitive receptor locations. The computer modeled noise receptor locations are as follows: the residential areas bordering the south side of the corridor, the residential areas bordering the north side of the study corridor, and the New Horizons facility bordering the north side of the corridor. The noise receptor location and description summary is presented in Table 2. The potential noise sensitive locations identified in this report are representative of Activity Category B and C as shown in Table 1.

There are no other noise sensitive areas located within the project corridor as of the date of this report and was verified through an active building permit request. There are no other noise sources located adjacent to the study corridor which could interfere with the existing ambient highway traffic noise levels with the exception of the industrial site between Glades Cut Off Road and NW East Torino Parkway. There are no other noise sources within the vicinity of this project that could potentially interfere with the predicted sound levels within the limits of the study corridor. First floor and second floor receptors were assumed to be placed 5 feet and 15 feet above ground, respectively. Consistent with these guidelines, residential receptors were placed at the edge of the dwelling unit closest to the major traffic noise source at a height of 5 feet.

| Noise <br> Receptor <br> Number | Noise Receptor Station Number $\mathrm{N}=$ North Side of CR 712 S=South Side of CR 712 | Noise Receptor Description | fDOT NAC | Distance From Closest Center Tavel Lane (Pt) | Distance From Closest Center Tavel Lane ( P ) | Distance Vaniance ( P ) | Noise Receptor Number | Noise Receptor Station Number $\mathrm{N}=$ North Side of CR 712 S-South Side of CR 712 | Noise Receptor Description | FDOT NAC | Distance From Closest Center Travel Lane (Ft) | Distance From Closest Center Tavel Lane (Pt) | Distance Vaniance (Ft) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Existing Alignment | Build Altemative 2 South Alignment |  |  |  |  |  | Existing Alignment | Build Altemative 2 South Alignment |  |
| R1S | 3004+45.91 | Residential | 66 | 507.2834 | 498.8831 | 8.40 | R31S | 3027+48.89 | Residential | 66 | 363.4664 | 317.2178 | 46.25 |
| R2S | 3005+81.23 | Residential | 66 | 356.7539 | 348.8517 | 7.90 | R32S | 3026+08.46 | Residential | 66 | 359.1435 | 310.5067 | 48.64 |
| R3S | 3006+35.34 | Residential | 66 | 311.3307 | 303.6026 | 7.73 | R33S | 3026+39.99 | Residential | 66 | 190.1252 | 142.0491 | 48.08 |
| R4S | 3008+17.52 | Residential | 66 | 263.873 | 253.2164 | 10.66 | R34S | 3028+18.66 | Residential | 66 | 197.2373 | 151.5797 | 45.66 |
| R5S | 3010+49.97 | Residential | 66 | 398.3722 | 378.5799 | 19.79 | R35S | 3029+64.55 | Residential | 66 | 383.2248 | 337.893 | 45.33 |
| R6S | 3009+60.06 | Residential | 66 | 504.6311 | 488.2624 | 16.37 | R36S | 3029+98.94 | Residential | 66 | 462.004 | 416.7489 | 45.26 |
| R7S | 3011+51.44 | Residential | 66 | 514.8895 | 488.8691 | 26.02 | R37S | 3050+04.37 | Residential | 66 | 165.89 | 130.5226 | 35.37 |
| R8S | 3010+82.68 | Residential | 66 | 613.4594 | 591.6895 | 21.77 | R38S | 3050+88.76 | Residential | 66 | 161.096 | 125.6656 | 35.43 |
| R9S | 3011+59.75 | Residential | 66 | 259.0793 | 233.0089 | 26.07 | R39S | 3052+56.78 | Residential | 66 | 173.158 | 137.556 | 35.60 |
| R10S | 3012+97.14 | Residential | 66 | 181.9925 | 148.8938 | 33.10 | R40S | 3054+21.23 | Residential | 66 | 141.4439 | 105.6408 | 35.80 |
| R11S | 3015+44.34 | Residential | 66 | 181.197 | 144.5477 | 36.65 | R41S | 3051+09.97 | Residential | 66 | 328.8981 | 293.4519 | 35.45 |
| R12S | 3016+57.54 | Residential | 66 | 201.0259 | 164.2119 | 36.81 | R42S | 3054+01.50 | Residential | 66 | 328.7977 | 293.0186 | 35.78 |
| R13S | 3014+62.26 | Residential | 66 | 343.182 | 306.6519 | 36.53 | R43S | 3051+01.82 | Residential | 66 | 551.1693 | 515.7291 | 35.44 |
| R14S | 3015+62.13 | Residential | 66 | 404.4173 | 367.7419 | 36.68 | R44S | 3051+00.23 | Residential | 66 | 452.3321 | 416.8931 | 35.44 |
| R15S | 3013+47.10 | Residential | 66 | 505.254 | 469.8739 | 35.38 | R45S | 3053+40.91 | Residential | 66 | 446.4279 | 410.7228 | 35.71 |
| R16S | 3014+88.62 | Residential | 66 | 570.7214 | 534.1527 | 36.57 | R46S | 3054+94.42 | Residential | 66 | 470.6828 | 434.7901 | 35.89 |
| R17S | 3015+69.01 | Residential | 66 | 634.6111 | 597.9254 | 36.69 | R47S | 3056+40.55 | Residential | 66 | 470.9306 | 434.8592 | 36.07 |
| R18S | 3015+30.84 | Residential | 66 | 729.4759 | 692.8456 | 36.63 | R48S | 3054+31.06 | Residential | 66 | 639.8595 | 604.0441 | 35.82 |
| R19S | 3020+36.13 | Residential | 66 | 464.2656 | 426.1559 | 38.11 | R49S | 3056+43.38 | Residential | 66 | 650.5029 | 614.428 | 36.07 |
| R20S | 3020+21.03 | Residential | 66 | 396.2744 | 358.2902 | 37.98 | R50S | 3058+27.28 | Residential | 66 | 595.3983 | 559.0987 | 36.30 |
| R21S | 3020+86.00 | Residential | 66 | 300.9958 | 262.4928 | 38.50 | R51S | 3057+26.05 | Residential | 66 | 132.8236 | 96.648 | 36.18 |
| R22S | 3021+41.99 | Residential | 66 | 233.5988 | 194.6507 | 38.95 | R52S | 3059+98.04 | Residential | 66 | 286.3602 | 249.8449 | 36.52 |
| R23S | 3022+00.71 | Residential | 66 | 176.1543 | 136.739 | 39.42 | R53S | 3058+34.63 | Residential | 66 | 353.8875 | 317.5791 | 36.31 |
| R24S | 3024+41.95 | Residential | 66 | 179.9823 | 132.0158 | 47.97 | R54S | 3059+38.36 | Residential | 66 | 447.757 | 411.3217 | 36.44 |
| R25S | 3023+69.03 | Residential | 66 | 353.4245 | 308.6702 | 44.75 | R55S | 3059+68.27 | Residential | 66 | 609.4173 | 572.943 | 36.47 |
| R26S | 3023+65.53 | Residential | 66 | 494.3093 | 449.5622 | 44.75 | R56S | 3059+64.12 | Residential | 66 | 691.1059 | 654.6372 | 36.47 |
| R27S | 3024+93.62 | Residential | 66 | 547.9732 | 498.677 | 49.30 | R57S | 3061+64.97 | Residential | 66 | 428.6798 | 391.9333 | 36.75 |
| R28S | 3026+20.32 | Residential | 66 | 611.067 | 562.5955 | 48.47 | R58S | 3061+54.51 | Residential | 66 | 529.7809 | 493.0488 | 36.73 |
| R29S | 3026+93.85 | Residential | 66 | 552.0933 | 504.8811 | 47.21 | R59S | 3061+74.33 | Residential | 66 | 611.514 | 574.7544 | 36.76 |
| R30S | 3028+30.65 | Residential | 66 | 438.163 | 392.5316 | 45.63 | R60S | 3062+55.24 | Residential | 66 | 691.6467 | 654.7749 | 36.87 |

Table 2
Noise Receptor Location and Description Summary
Build Alternative 2 South Alignment

| Noise Receptor Number | Noise Receptor Station Number $\mathrm{N}=$ North Side of CR 712 S=South Side of CR 712 | Noise Receptor Description | RDOT NAC | Distance From Closest Center Travel Lane (R.) | Distance From Closest Center Tavel Lane (Pt) | Distance Variance ( Ft ) | Noise Receptor Number | Noise Receptor Station Number N=North Side of CR 712 S=South Side of CR 712 | Noise Receptor Description | RDOT NAC | Distance From Closest Center Travel Lane (Ft) | Distance From Closest Center Tavel Lane (Pt) | Distance <br> Variance <br> ( Ft ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Existing Alignment | Build Altemative 2 South Alignment |  |  |  |  |  | Existing Alignment | Build Altemative 2 South Alignment |  |
| R61S | 3064+25.10 | Residential | 66 | 746.0931 | 708.9862 | 37.11 | R85S | 3082+38.71 | Residential | 66 | 161.6341 | 105.5095 | 56.12 |
| R62S | 3063+17.08 | Residential | 66 | 510.5158 | 473.5586 | 36.96 | R86S | 3084+94.65 | Residential | 66 | 164.6508 | 111.8398 | 52.81 |
| R63S | 3064+66.03 | Residential | 66 | 531.3593 | 494.1959 | 37.16 | R87S | 3086+41.20 | Residential | 66 | 254.3852 | 201.7377 | 52.65 |
| R64S | 3065+64.17 | Residential | 66 | 554.965 | 517.6658 | 37.30 | R88S | 3087+01.09 | Residential | 66 | 408.1465 | 355.6937 | 52.45 |
| R65S | 3066+09.96 | Residential | 66 | 483.066 | 445.7034 | 37.36 | R89S | 3087+09.56 | Residential | 66 | 492.7531 | 440.3286 | 52.42 |
| R66S | 3064+64.57 | Residential | 66 | 357.4664 | 320.3052 | 37.16 | R90S | 3079+88.22 | Residential | 66 | 356.7615 | 305.9422 | 50.82 |
| R67S | 3064+02.19 | Residential | 66 | 266.4318 | 229.357 | 37.07 | R91S | 3082+46.06 | Residential | 66 | 345.1618 | 288.6534 | 56.51 |
| R68S | 3064+05.85 | Residential | 66 | 171.9084 | 134.8286 | 37.08 | R92S | 3079+54.94 | Residential | 66 | 482.2461 | 431.4847 | 50.76 |
| R69S | 3067+01.01 | Residential | 66 | 336.0532 | 298.5647 | 37.49 | R93S | 3082+97.38 | Residential | 66 | 456.114 | 398.1649 | 57.95 |
| R70S | 3067+09.96 | Residential | 66 | 728.0983 | 690.597 | 37.50 | R94S | 3085+14.88 | Residential | 66 | 448.9887 | 396.4579 | 52.53 |
| R71S | 3067+71.23 | Residential | 66 | 577.0617 | 539.4758 | 37.59 | R95S | 3081+26.78 | Residential | 66 | 634.4179 | 581.1613 | 53.26 |
| R72S | 3068+72.71 | Residential | 66 | 478.1791 | 440.4527 | 37.73 | R96S | 3081+09.29 | Residential | 66 | 544.1132 | 491.3001 | 52.81 |
| R73S | 3070+58.47 | Residential | 66 | 364.5402 | 326.5568 | 37.98 | R97S | 3083+02.81 | Residential | 66 | 539.0488 | 480.3119 | 58.74 |
| R74S | 3072+22.19 | Residential | 66 | 351.99 | 313.7799 | 38.21 | R98S | 3083+43.79 | Residential | 66 | 616.4384 | 558.8532 | 57.59 |
| R75S | 3074+01.20 | Residential | 66 | 346.4019 | 305.8727 | 40.53 | R99S | 3087+20.44 | Residential | 66 | 645.7274 | 593.3511 | 52.38 |
| R76S | 3076+74.71 | Residential | 66 | 401.7572 | 351.4857 | 50.27 | R100N | 3085+62.32 | Residential | 66 | -717.2959 | -769.922 | 52.63 |
| R77S | 3077+65.25 | Residential | 66 | 503.6502 | 453.2203 | 50.43 | R101N | 3085+39.00 | Residential | 66 | -529.9373 | -582.4585 | 52.52 |
| R78S | 3068+45.45 | Residential | 66 | 257.9536 | 220.2652 | 37.69 | R102N | 3084+15.04 | Residential | 66 | -547.1183 | -601.5131 | 54.39 |
| R79S | 3070+83.05 | Residential | 66 | 181.8404 | 143.8231 | 38.02 | R103N | 3080+94.15 | Residential | 66 | -295.4803 | -347.6925 | 52.21 |
| R80S | 3072+26.40 | Residential | 66 | 142.6868 | 104.4711 | 38.22 | R104N | 3079+99.57 | Residential | 66 | -136.21 | -187.0484 | 50.84 |
| R81S | 3073+89.46 | Residential | 66 | 173.6045 | 133.6874 | 39.92 | R105N | 3076+75.64 | Medical Fac. | 66 | -524.2859 | -574.5577 | 50.27 |
| R82S | 3075+46.32 | Residential | 66 | 182.6386 | 134.3335 | 48.31 | R106N | 3074+51.46 | Medical Fac. | 66 | -549.7451 | -591.5121 | 41.77 |
| R83S | 3078+28.19 | Residential | 66 | 175.862 | 125.3226 | 50.54 | R107N | 3072+26.86 | Medical Fac. | 66 | -414.0476 | -452.2634 | 38.22 |
| R84S | 3080+75.99 | Residential | 66 | 176.6979 | 124.7848 | 51.91 | R108N | 3070+98.96 | Medical Fac. | 66 | -139.6733 | -177.7123 | 38.04 |
|  |  |  |  |  |  |  | R84A S | 3080+13.23 | Residential | 66 | 163.4186 | 112.5558 | 50.86 |
|  |  |  |  |  |  |  | R85A S | 3081+85.05 | Residential | 66 | 161.5149 | 106.9972 | 54.52 |

### 6.1 MODEL VALIDATION

Field measurements were documented to evaluate the current noise conditions and to determine if TNM version 2.5 could accurately predict the noise levels for the study corridor under evaluation. Measurements of the ambient noise levels for the project corridor were documented using procedures defined in the FHWA report Measurement of Highway-Related Noise (FHWA-PD-96-046) (4). Noise level measurements, meteorological conditions, and traffic data were recorded at two (2) representative locations adjacent to the Midway Road corridor. The study corridor limits extend from Glades Cut Off Road to Selvitz Road in St. Lucie County.

The field measurement locations are identified as ML1 and ML3 and are described below. The locations are also presented in the noise receptor aerials in Appendix C.

- ML1 - Located on the south side of Midway Road between NW East Torino Parkway and the bridge adjacent to R24S. The measurement location is situated approximately 22 feet from the edge of pavement.
- ML3 - Located on the south side of Midway Road (east of Post Office Road) adjacent to R68S. The measurement location is situated approximately 30 feet from the edge of pavement.


### 6.1.1 METHODOLOGY

A series of three (3) repetitions of 10-minute measurement periods were acquired at the designated field measurement locations (ML1 and ML3). Noise levels were measured using the Larson Davis 831 Type I Real Time Sound Level Analyzer (SN 4153) for the purposes of field verification of the existing measured noise levels. The Larson Davis 831 instrumentation adheres to the following Acoustical Specifications IEC 61672-2013 (Class 1), IEC 606512001 (Type 1), IEC 60804-2000 (Type 1), IEC 61260-2001 (Class 1), IEC 61252-2002, ANSI S1.4-2014 Class 1, ANSI S1.11-2004, 1/1 \& 1/3 Octave Band Class 1, and ANSI S1.25-1991 (R2007).

The Larson Davis Model CAL 200 Calibrator (SN 8533) with two selectable calibration levels of 94.00 dB and 114.00 dB at 1 KHz was utilized in the measurement analysis and was the manufacturer's specified calibrator. The Larson Davis Model CAL 200 Calibrator (SN 8533) adheres to the following Acoustical Specifications IEC 6LR61, NEDA 1604A, IEC 60942-2003 CLASS 1, and ANSI S1.40-2006. The entire acoustical system was calibrated before and after each ten (10) minute measurement period and received an annual factory calibration by the manufacturer's representative. The sound level analyzer was calibrated at 114.00 dB at 1 KHz and was verified to be within the calibration tolerance. The acoustical and meteorological instrumentation is presented in Table 3.

The sound level meter was properly mounted on an instrument tripod approximately five (5) feet above the ground surface at each designated noise measurement location. The manufacturer's specified wind screen was properly mounted on the sound level meter microphone during the field measurement period. Prior to each ten (10) minute measurement period, the sound level meter's battery level was verified to be within the manufactures recommended tolerance. Vehicle speeds were measured with a Stalker Radar Gun (SN KE5356) which was calibrated before and after each ten (10) minute measurement period.

### 6.1.2 METEOROLOGICAL CONDITIONS

During each field noise measurement period, meteorological components, such as cloud cover, ambient temperature, wind speed, wind direction, and humidity, were documented. The corresponding meteorological condition associated with each measurement period was recorded with a Kestrel hand held Pocket Weather Tracker. The Kestrel Model 4500NV (SN 678342) was utilized to record all field meteorological conditions associated with this study.

### 6.1.3 FIELD MEASUREMENT DATA

Field noise measurements, meteorological conditions, and vehicle speeds were documented at two (2) representative locations (ML1 and ML3) situated along the Midway Road study corridor. Each measurement location represented the roadway segments adjacent to noise sensitive areas where potential noise barrier placement could be evaluated, if necessary. Additional field measurement locations (ML2 and ML4) were not included in the study due to ambient interference from heavy truck side street activity and construction noise at Midway Road and Selvitz Road.

| Table 3 <br> Acoustical and Meteorological Instrumentation |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Instrument Type \& Model No. | Manufacturer | Serial No. | Annual Calibration | Calibration Laboratory |  |  |  |
|  |  |  |  |  |  |  |  |
| Larson Davis Model 831 Type I SLM | Larson Davis | 0004153 | $04 / 07 / 2016$ | Larson Davis |  |  |  |
| Larson Davis PRM 831 Preamplifier | Larson Davis | 012499 | $04 / 06 / 2016$ | Larson Davis |  |  |  |
| Larson Davis 377B02 Mic rophone | Larson Davis | 113988 | $04 / 07 / 2016$ | Larson Davis |  |  |  |
| Larson Davis Cal 200 Calibrator | Larson Davis | 8533 | $10 / 01 / 2015$ | N/A |  |  |  |
| Kestrel 4500 NV Pocket Weather Tracker | Kestrel | 678342 | N/A |  |  |  |  |

The noise measurement data sheets are presented in Appendix D. The field measured noise levels and corresponding vehicle classification information are depicted in the TNM 2.5 model validation results presented in Table 4. The noise levels are reported to the $1 / 10$ th of a decibel using the LEQ(h) noise descriptor.

### 6.1.4 MODEL VALIDATION RESULTS

In accordance with Part 2, Chapter 17 Noise (July 27, 2016), of the PD\&E Manual, the acceptable range of error between the field noise level measurements and the predicted noise levels is $+/-3 \mathrm{~dB}(\mathrm{~A})$. If this acceptable range of error can be achieved, TNM version 2.5 inputs can be relied upon for the purposes of predicting the noise levels for the project conditions. The difference between the field measured noise levels and the predicted noise levels for all measurement trials was within +/- $3 \mathrm{~dB}(\mathrm{~A})$. Thus, the model inputs were determined to be valid for further use with this study. The TNM 2.5 model validation results are presented in Table 4. The first measurement period at monitoring location ML1 was not used due to interference from the industrial site on the north side of Midway Road. The remaining measurement periods were within the acceptable range of error for validation purposes.

### 6.2 PREDICTED NOISE LEVELS AND ABATEMENT ANALYSIS

The predicted noise levels and applicable abatement analysis measures were developed based upon the modeling criteria described in Part 2, Chapter 17 Noise (July 27, 2016), of the PD\&E Manual and the Traffic Noise Modeling and Analysis Practitioners Handbook dated January 1, 2016. Specific input data for TNM version 2.5 is required to generate computer predicted noise levels associated with the project area under evaluation. One hundred and ten (110) noise sensitive receptor locations representative of single family residential areas and a medical treatment facility were evaluated. The noise sensitive locations are depicted in the noise receptor aerials presented in Appendix C.

### 6.2.1 DATA SOURCES

The data input sources that TNM version 2.5 relied upon for the purposes of predicting noise levels for this study are as follows: roadway and receptor data (state plane coordinates), project traffic data (i.e., vehicle volumes, vehicle mix, and vehicle speeds), distance(s) from the center of each roadway to the receptor, the widths of the roadway and lanes, the height of the receptor, barrier and buffer information including embankments, areas of water (e.g., ponds), paved surfaces, building rows or other structures, the type of propagation paths (hard vs. soft), variations in terrain between the receptors and the roadway, and any changes in grade. Each of these factors can influence the predicted noise levels. The coordinate geometry for this study was derived from the State Plane Coordinate System. Elevation data was derived from the project survey data file and county elevation contour maps.

Table 4
TNM 2.5 Model Validation Results

| Field Receptor Number | Aerial Sheet | Distance from Closest Edge of Tavel Lane (Ft) | Trial | Date | Start Time 10 Minute Period | Vehicle Classification田/WB Vehicles/ Hour |  |  |  |  | Average Speed EB/WB | Field <br> Measured <br> Noise <br> Level <br> dB(A) | Computer Predicted Noise Level dB(A) | Difference <br> (Measured <br> Predicted) <br> dB(A) | Model Validation ( $+/-$-) 3 dB(A) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Cars | Medium Trucks | Heavy Trucks | Bus | MC | C/MT/ HT/B/MC |  |  |  |  |
| ML1 | 1 | 22 | 2 | 06/30/16 | 11:42:12 | 336/408 | 30/30 | 54/24 | 0/0 | 0/0 | 41,43/40,40/41,36/0/0 | 72.6 | 71.6 | - 1.0 | YES |
| ML1 | 1 | 22 | 3 | 06/30/16 | 12:02:00 | 456/420 | 12/24 | 6/24 | 0/12 | 0/6 | 44,42/37,43/33,43/0,42/0,30 | 72.6 | 69.6 | - 3.0 | YES |
| ML3 | 2 | 30 | 1 | 07/01/16 | 11:12:25 | 624/492 | 30/18 | 18/30 | 0/0 | 6/0 | 42,44/40,39/36,44/0/39,0 | 70.8 | 68.6 | -2.2 | YES |
| ML3 | 2 | 30 | 2 | 07/01/16 | 11:31:06 | 492/456 | 24/24 | 36/18 | 6/0 | 0/0 | 46,46/40,44/44,43/37,0/0 | 70.5 | 69.2 | -1.3 | YES |
| ML3 | 2 | 30 | 3 | 07/01/16 | 11:49:54 | 612/642 | 30/18 | 18/12 | 6/0 | 0/0 | 40,41/40,42/42,43/39,0/0 | 70.6 | 68.1 | - 2.5 | YES |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: ML1-1 Trial 1 sound level had excessive interference from the industrial site on the north side of the road.

### 6.2.2 PREDICTED NOISE LEVELS

The TNM 2.5 predicted noise levels for the project area are presented in Table 5. The study evaluated the Existing Year 2015 Condition, the No-Build Alternative Design Year 2040 Condition, and the Build Year Alternative 2 Design Year 2040 Condition. The predicted noise levels were evaluated for five (5) Noise Sensitive Areas which represent one hundred and ten (110) noise sensitive receptor locations.

### 6.2.3 NOISE SENSITIVE AREA 1

Noise Sensitive Area 1, which represents the residential areas on the south side of Midway Road between Glades Cut Off Road and NW East Torino Parkway will experience the following computer predicted sound levels:

- Existing Year 2015 Condition: $49.1 \mathrm{~dB}(\mathrm{~A})$ to $59.3 \mathrm{~dB}(\mathrm{~A})$
- No-Build Alternative Design Year 2040 Condition: $50.3 \mathrm{~dB}(\mathrm{~A})$ to $59.4 \mathrm{~dB}(\mathrm{~A})$
- Build Alternative 2 Design Year 2040 Condition: $53.9 \mathrm{~dB}(\mathrm{~A})$ to $65.9 \mathrm{~dB}(\mathrm{~A})$


### 6.2.4 NOISE SENSITIVE AREA 2

Noise Sensitive Area 2, which represents the residential areas on the south side of Midway Road between NW East Torino Parkway and Florida's Turnpike will experience the following computer predicted sound levels:

- Existing Year 2015 Condition: $49.4 \mathrm{~dB}(\mathrm{~A})$ to $59.1 \mathrm{~dB}(\mathrm{~A})$
- No-Build Alternative Design Year 2040 Condition: $49.8 \mathrm{~dB}(\mathrm{~A})$ to $59.1 \mathrm{~dB}(\mathrm{~A})$
- Build Alternative 2 Design Year 2040 Condition: $54.5 \mathrm{~dB}(\mathrm{~A})$ to $65.5 \mathrm{~dB}(\mathrm{~A})$


### 6.2.5 NOISE SENSITIVE AREA 3

Noise Sensitive Area 3, which represents the residential areas on the south side of Midway Road between NW Milner Drive to east of NW Mayfield Lane will experience the following computer predicted sound levels:

- Existing Year 2015 Condition: $47.2 \mathrm{~dB}(\mathrm{~A})$ to $61.5 \mathrm{~dB}(\mathrm{~A})$
- No-Build Alternative Design Year 2040 Condition: $47.3 \mathrm{~dB}(\mathrm{~A})$ to $61.5 \mathrm{~dB}(\mathrm{~A})$
- Build Alternative 2 Design Year 2040 Condition: $51.9 \mathrm{~dB}(\mathrm{~A})$ to $65.9 \mathrm{~dB}(\mathrm{~A})$


### 6.2.6 NOISE SENSITIVE AREA 4

Noise Sensitive Area 4, which represents the residential areas on the south side of Midway Road from east of NW Mayfield Lane to Selvitz Road will experience the following computer predicted sound levels:

- Existing Year 2015 Condition: $46.7 \mathrm{~dB}(\mathrm{~A})$ to $60.3 \mathrm{~dB}(\mathrm{~A})$
- No-Build Alternative Design Year 2040 Condition: $46.9 \mathrm{~dB}(\mathrm{~A})$ to $60.5 \mathrm{~dB}(\mathrm{~A})$
- Build Alternative 2 Design Year 2040 Condition: $51.2 \mathrm{~dB}(\mathrm{~A})$ to $66.7 \mathrm{~dB}(\mathrm{~A})$

| Table 5 <br> TNM 2.5 Predicted Noise Levels dB(A) <br> Build Alternative 2 South Alignment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise Receptor Number | Number of Noise Sensitive Stes Represented | Activity Category | $\begin{aligned} & \text { fDOT } \\ & \text { NAC } \end{aligned}$ | (2015) <br> Existing <br> Year <br> dB(A) | (2040) <br> No-Build <br> Altemative <br> dB(A) | (2040) Build Year Altemative dB(A) | Difference <br> Between <br> Build and Existing $\mathrm{dB}(\mathrm{A})$ | Approach or Exceed PDOTNAC | Consider Abatement | Noise Receptor Number | Number of Noise <br> Sensitive Sites <br> Represented | Activity Category | FDOT NAC | (2015) <br> Existing Year <br> dB(A) | (2040) No-Build Altemative dB(A) | (2040) Build Year Altemative $d \mathrm{~d}(\mathrm{~A})$ | Difference Between Build and Existing dB(A) | Approach or Exceed FDOTNAC | Consider Abatement |
| R1S | 1 | B | 66 | 53.3 | 56.4 | 57.8 | 4.5 | N | N | R31S | 1 | B | 66 | 53.1 | 53.2 | 59.0 | 5.9 | N | N |
| R2S | 1 | B | 66 | 55.2 | 57.6 | 59.7 | 4.5 | N | N | R32S | 1 | B | 66 | 53.2 | 53.4 | 59.0 | 5.8 | N | N |
| R3S | 1 | B | 66 | 56.0 | 58.2 | 60.4 | 4.4 | N | N | R33S | 1 | B | 66 | 58.1 | 58.1 | 63.1 | 5.0 | N | N |
| R4S | 1 | B | 66 | 56.8 | 58.0 | 61.3 | 4.5 | N | N | R34S | 1 | B | 66 | 57.4 | 57.5 | 62.4 | 5.0 | N | N |
| R5S | 1 | B | 66 | 53.8 | 54.8 | 58.6 | 4.8 | N | N | R35S | 1 | B | 66 | 52.8 | 52.9 | 58.8 | 6.0 | N | N |
| R6S | 1 | B | 66 | 52.0 | 53.4 | 56.9 | 4.9 | N | N | R36S | 1 | B | 66 | 51.5 | 51.6 | 56.7 | 5.2 | N | N |
| R7S | 1 | B | 66 | 51.7 | 52.7 | 56.8 | 5.1 | N | N | R37S | 1 | B | 66 | 59.5 | 59.5 | 64.8 | 5.3 | N | N |
| R8S | 1 | B | 66 | 50.5 | 52.0 | 55.2 | 4.7 | N | N | R38S | 1 | B | 66 | 59.8 | 59.8 | 65.0 | 5.2 | N | N |
| R9S | 1 | B | 66 | 56.4 | 57.0 | 61.5 | 5.1 | N | N | R39S | 1 | B | 66 | 59.5 | 59.6 | 64.2 | 4.7 | N | N |
| R10S | 1 | B | 66 | 59.1 | 59.4 | 65.2 | 6.1 | N | N | R40S | 1 | B | 66 | 60.4 | 60.4 | 65.5 | 5.1 | $N$ | $N$ |
| R11S | 1 | B | 66 | 59.3 | 59.4 | 65.9 | 6.6 | N | N | R41S | 1 | B | 66 | 53.6 | 53.6 | 59.1 | 5.5 | N | N |
| R12S | 1 | B | 66 | 58.7 | 58.8 | 65.0 | 6.3 | N | N | R42S | 1 | B | 66 | 53.6 | 53.7 | 58.8 | 5.2 | N | N |
| R13S | 1 | B | 66 | 54.8 | 55.2 | 60.4 | 5.6 | N | N | R43S | 1 | B | 66 | 49.1 | 49.2 | 54.6 | 5.5 | N | N |
| R14S | 1 | B | 66 | 53.7 | 54.1 | 59.3 | 5.6 | $N$ | $N$ | R44S | 1 | B | 66 | 50.7 | 50.8 | 56.7 | 6.0 | $N$ | $N$ |
| R15S | 1 | B | 66 | 52.0 | 52.7 | 57.2 | 5.2 | N | N | R45S | 1 | B | 66 | 50.9 | 51.0 | 56.6 | 5.7 | N | N |
| R16S | 1 | B | 66 | 50.9 | 51.7 | 56.2 | 5.3 | N | N | R46S | 1 | B | 66 | 50.5 | 50.5 | 56.0 | 5.5 | N | N |
| R17S | 1 | B | 66 | 50.1 | 50.9 | 55.2 | 5.1 | N | N | R47S | 1 | B | 66 | 50.5 | 50.5 | 56.0 | 5.5 | N | N |
| R18S | 1 | B | 66 | 49.1 | 50.3 | 53.9 | 4.8 | N | N | R48S | 1 | B | 66 | 47.8 | 47.9 | 52.8 | 5.0 | N | N |
| R19S | 1 | B | 66 | 52.1 | 52.5 | 58.0 | 5.9 | N | $N$ | R49S | 1 | B | 66 | 47.7 | 47.8 | 52.6 | 4.9 | $N$ | $N$ |
| R20S | 1 | B | 66 | 53.4 | 53.7 | 59.3 | 5.9 | N | N | R50S | 1 | B | 66 | 48.5 | 48.6 | 53.5 | 5.0 | N | N |
| R21S | 1 | B | 66 | 55.3 | 55.5 | 61.0 | 5.7 | N | N | R51S | 1 | B | 66 | 61.5 | 61.5 | 65.9 | 4.4 | N | N |
| R22S | 1 | B | 66 | 57.0 | 57.1 | 62.9 | 5.9 | N | N | R52S | 1 | B | 66 | 55.0 | 55.0 | 60.1 | 5.1 | N | N |
| R23S | 1 | B | 66 | 58.7 | 58.7 | 65.5 | 6.8 | N | N | R53S | 1 | B | 66 | 53.1 | 53.1 | 58.4 | 5.3 | N | N |
| R24S | 1 | B | 66 | 59.1 | 59.1 | 65.5 | 6.4 | N | N | R54S | 1 | B | 66 | 50.9 | 51.0 | 56.6 | 5.7 | N | N |
| R25S | 1 | B | 66 | 53.6 | 53.8 | 59.4 | 5.8 | N | N | R55S | 1 | B | 66 | 48.3 | 48.4 | 53.3 | 5.0 | N | N |
| R26S | 1 | B | 66 | 51.1 | 51.4 | 56.9 | 5.8 | N | N | R56S | 1 | B | 66 | 47.2 | 47.3 | 51.9 | 4.7 | N | N |
| R27S | 1 | B | 66 | 50.3 | 50.6 | 55.7 | 5.4 | $N$ | N | R57S | 1 | B | 66 | 51.3 | 51.3 | 56.9 | 5.6 | N | N |
| R28S | 1 | B | 66 | 49.4 | 49.8 | 54.5 | 5.1 | N | N | R58S | 1 | B | 66 | 49.5 | 49.6 | 54.8 | 5.3 | N | N |
| R29S | 1 | B | 66 | 50.1 | 50.5 | 55.4 | 5.3 | N | N | R59S | 1 | B | 66 | 48.3 | 48.4 | 53.2 | 4.9 | N | N |
| R30S | 1 | B | 66 | 51.7 | 51.9 | 57.5 | 5.8 | N | N | R60S | 1 | B | 66 | 47.2 | 47.4 | 51.9 | 4.7 | N | N |


| Table 5 <br> TNM 2.5 Predicted Noise Levels dB(A) <br> Build Alternative 2 South Alignment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise Receptor Number | Number of <br> Noise Sensitive <br> Stes <br> Represented | Activity Category | $\begin{aligned} & \text { fDOT } \\ & \text { NAC } \end{aligned}$ | (2015) <br> Existing <br> Year <br> dB(A) | (2040) <br> No-Build <br> Altemative <br> dB(A) | (2040) Build Year Altemative dB(A) | Difference <br> Between <br> Build and Existing dB(A) | Approach or Exceed FDOTNAC | Consider Abatement | Noise Receptor Number | Number of Noise Sensitive Sites Represented | Activity Category | FDOT NAC | (2015) <br> Existing Year <br> dB(A) | (2040) No-Build Altemative dB(A) | (2040) Build Year Altemative dB(A) | Difference Between Build and Existing dB(A) | Approach or Exceed PDOTNAC | Consider Abatement |
| R61S | 1 | B | 66 | 46.7 | 46.9 | 51.2 | 4.5 | N | N | R85S | 1 | B | 66 | 60.0 | 60.1 | 66.6 | 6.6 | $\mathrm{Y}^{2}$ | $\mathrm{Y}^{2}$ |
| R62S | 1 | B | 66 | 49.8 | 49.9 | 55.2 | 5.4 | N | N | R86S | 1 | B | 66 | 60.2 | 60.5 | 65.5 | 5.3 | N | N |
| R63S | 1 | B | 66 | 49.5 | 49.6 | 54.7 | 5.2 | N | N | R87S | 1 | B | 66 | 58.0 | 58.5 | 61.8 | 3.8 | N | N |
| R64S | 1 | B | 66 | 49.2 | 49.3 | 54.3 | 5.1 | N | N | R88S | 1 | B | 66 | 55.8 | 56.3 | 58.8 | 3.0 | N | N |
| R65S | 1 | B | 66 | 50.3 | 50.4 | 55.8 | 5.5 | N | N | R89S | 1 | B | 66 | 55.0 | 55.4 | 57.6 | 2.6 | N | N |
| R66S | 1 | B | 66 | 52.9 | 52.9 | 58.2 | 5.3 | N | N | R90S | 1 | B | 66 | 53.0 | 53.2 | 59.6 | 6.6 | N | N |
| R67S | 1 | B | 66 | 55.5 | 55.5 | 60.2 | 4.7 | N | N | R91S | 1 | B | 66 | 53.9 | 54.2 | 59.8 | 5.9 | N | N |
| R68S | 1 | B | 66 | 59.2 | 59.2 | 64.0 | 4.8 | N | N | R92S | 1 | B | 66 | 50.7 | 51.0 | 57.0 | 6.3 | N | N |
| R69S | 1 | B | 66 | 53.5 | 53.5 | 58.8 | 5.3 | N | N | R93S | 1 | B | 66 | 52.0 | 52.4 | 57.6 | 5.6 | N | N |
| R70S | 1 | B | 66 | 47.0 | 47.1 | 51.4 | 4.4 | $N$ | $N$ | R94S | 1 | B | 66 | 53.1 | 53.6 | 57.5 | 4.4 | $N$ | N |
| R71S | 1 | B | 66 | 48.9 | 49.0 | 53.9 | 5.0 | N | N | R95S | 1 | B | 66 | 49.2 | 49.7 | 53.9 | 4.7 | N | N |
| R72S | 1 | B | 66 | 50.5 | 50.6 | 56.0 | 5.5 | N | N | R96S | 1 | B | 66 | 50.2 | 50.6 | 55.7 | 5.5 | N | N |
| R73S | 1 | B | 66 | 52.9 | 52.9 | 58.3 | 5.4 | N | N | R97S | 1 | B | 66 | 50.9 | 51.4 | 55.9 | 5.0 | N | N |
| R74S | 1 | B | 66 | 53.1 | 53.2 | 58.6 | 5.5 | $N$ | $N$ | R98S | 1 | B | 66 | 50.0 | 50.5 | 54.4 | 4.4 | $N$ | $N$ |
| R75S | 1 | B | 66 | 53.2 | 53.3 | 58.8 | 5.6 | N | N | R99S | 1 | B | 66 | 53.9 | 54.3 | 55.5 | 1.6 | N | N |
| R76S | 1 | B | 66 | 52.0 | 52.1 | 58.4 | 6.4 | N | N | R100N | 1 | B | 66 | 53.1 | 54.5 | 52.3 | -0.8 | N | N |
| R77S | 1 | B | 66 | 50.3 | 50.5 | 56.3 | 6.0 | N | N | R101N | 1 | B | 66 | 53.5 | 54.6 | 55.3 | 1.8 | N | N |
| R78S | 1 | B | 66 | 56.1 | 56.1 | 60.7 | 4.6 | N | $N$ | R102N | 1 | B | 66 | 51.8 | 52.6 | 54.8 | 3.0 | N | $N$ |
| R79S | 1 | B | 66 | 59.2 | 59.2 | 63.8 | 4.6 | N | $N$ | R103N | 1 | B | 66 | 55.1 | 55.3 | 60.1 | 5.0 | N | N |
| R80S | 1 | B | 66 | 60.3 | 60.3 | 65.6 | 5.3 | N | N | R104N | 1 | B | 66 | 61.6 | 61.7 | 65.8 | 4.2 | N | N |
| R81S | 1 | B | 66 | 59.3 | 59.4 | 64.1 | 4.8 | N | N | R105N | 1 | C | 66 | 50.3 | 50.5 | 55.0 | 4.7 | N | N |
| R82S | 1 | B | 66 | 58.9 | 58.9 | 64.4 | 5.5 | N | N | R106N | 1 | C | 66 | 50.0 | 50.1 | 54.5 | 4.5 | N | N |
| R83S | 1 | B | 66 | 58.5 | 58.5 | 65.5 | 7.0 | N | N | R107N | 1 | C | 66 | 52.3 | 52.4 | 57.3 | 5.0 | N | N |
| R84S | 1 | B | 66 | 58.7 | 58.7 | 65.8 | 7.1 | $\mathbf{N}^{1}$ | $\mathbf{N}^{1}$ | R108N | 1 | C | 66 | 61.5 | 61.6 | 65.3 | 3.8 | N | N |
|  |  |  |  |  |  |  |  |  |  | R84A S | 1 | B | 66 | 58.8 | 58.9 | 66.0 | 7.2 | $\mathrm{Y}^{2}$ | $\mathbf{Y}^{2}$ |
|  |  |  |  |  |  |  |  |  |  | R85A S | 1 | B | 66 | 59.9 | 60.0 | 66.7 | 6.8 | $\mathrm{Y}^{2}$ | $\mathrm{Y}^{2}$ |

${ }^{2}$ Non Impacted/ Benefitted Receptor
$Y^{2}$ Noise Bamier Computer Modeled (BW-15)

### 6.2.7 NOISE SENSITIVE AREA 5

Noise Sensitive Area 5, which represents the residential area and the New Horizons facility on the north side of Midway Road from Selvitz Road to Post Office Road, will experience the following computer predicted sound levels:

- Existing Year 2015 Condition: $50.0 \mathrm{~dB}(\mathrm{~A})$ to $61.6 \mathrm{~dB}(\mathrm{~A})$
- No-Build Alternative Design Year 2040 Condition: $50.1 \mathrm{~dB}(\mathrm{~A})$ to $61.7 \mathrm{~dB}(\mathrm{~A})$
- Build Alternative 2 Design Year 2040 Condition: 52.3 dB(A) to 65.8 dB(A)


### 6.2.8 NOISE IMPACT ANALYSIS

The traffic noise levels predicted at the one hundred and ten (110) noise sensitive receptor locations under evaluation approached or exceeded the FDOT NAC at one (1) residential area, therefore potential noise abatement measures were evaluated.

## Noise Sensitive Areas 1,2,3, and 5

The traffic noise levels predicted at the noise sensitive receptor locations under evaluation did not approach or exceed the FDOT NAC at Noise Sensitive Area 1, Noise Sensitive Area 2, Noise Sensitive Area 3, and Noise Sensitive Area 5; therefore, potential noise abatement measures were not evaluated.

## Noise Sensitive Area 4

Potential noise abatement measures were evaluated at one (1) location (Noise Sensitive Area 4) on the southeast side of the study corridor west of Selvitz Road. Potential noise barrier placement (BW-1S) was evaluated for the residential dwellings identified as R84S and R85S. Additionally, two (2) neighboring residential dwellings (R84AS and R85AS) were evaluated. The impacted (benefitted) receptors include three (3) residential dwellings. Additionally, a single residential dwelling was not impacted; however, it was benefitted by the computer modeled noise barrier (BW-1S).

A noise barrier approximately 500 Feet long and 10 Feet high was determined to meet the Department's feasibility factor (Noise Reduction Factor) and reasonableness factor (Noise Reduction Design Goal). The cost of the noise barrier is approximately $\$ 150,000.00$. The cost per benefitted receptor is approximately $\$ 37,500.00$. The cost of the noise barrier meets the Department's cost reasonableness of $\$ 42,000.00$ per benefitted receptor. The noise barrier analysis results are presented in Table 6.

Table 6
Noise Barrier Analysis Results

| Noise <br> Barrier Height (Feet) | Noise <br> Bamier <br> Length <br> (Feet) | Number of Impacted Receptors | Noise Reduction at Impacted Receptors ${ }^{1}$$d \mathrm{~dB}(\mathrm{~A})$ |  |  | Number of Benefitted Receptors ${ }^{2}$ |  |  | Average Reduction for Benefitted Receptors $d B(A)^{1}$ | Total <br> Estimated <br> Cost ${ }^{3}$ | Costper Benefitted Receptor ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & 5-5.9 \\ & \mathrm{~dB}(\mathrm{~A}) \end{aligned}$ | $\begin{gathered} 6-6.9 \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$ | $\begin{gathered} >7.0 \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$ | Impacted | Not Impacted | Total |  |  |  |
| 8 | NA ${ }^{5}$ | 3 | 3 | 1 | 0 | $N A^{5}$ | $N A^{5}$ | $N A^{5}$ | $N A^{5}$ | NA ${ }^{5}$ | $N A^{5}$ |
| 10 | 500 | 3 | 0 | 0 | 4 | 3 | 1 | 4 | 7.35 | \$ 150,000 | \$ 37,500 |
| 12 | 500 | 3 | 0 | 0 | 4 | 3 | 1 | 4 | 8.375 | \$ 180,000 | \$ 45,000 |

${ }^{1}$ Receptors with a predicted noise level of $66 \mathrm{~dB}(\mathrm{~A})$ or greater.
${ }^{2}$ Receptors with a predicted reduction of $5 \mathrm{~dB}(\mathrm{~A})$ or more are considered benefitted.
${ }^{3}$ Based on a unit cost of $\$ 30$ per square foot.
${ }^{4}$ FDOT cost reasonable criterion is $\$ 42,000$ per benefitted receptor.
${ }^{5} 7 \mathrm{~dB}(\mathrm{~A})$ reduction not achieved at any receptor.

### 7.0 CONCLUSIONS

This noise study has been prepared for the PD\&E Study associated with the Midway Road study corridor which extends from Glades Cut Off Road to Selvitz Road in St. Lucie County. Traffic noise impacts were evaluated for potential noise sensitive locations which were developed prior to the project's DPK. Based upon field reviews and active building permit requests from St. Lucie County and the City of Port St. Lucie, it was determined that Activity Category B and C locations could experience potential noise impacts from the project area improvements. The Build Alternative 2 Design Year 2040 Condition was selected as the preferred alternative. No other alternatives were evaluated.

One hundred and ten (110) noise sensitive receptor locations representative of residential dwellings and the New Horizons facility were evaluated. The computer modeled noise receptor locations are representative of one hundred and six (106) residential locations and four (4) New Horizon facility locations.

The traffic noise levels predicted at the noise sensitive receptor locations under evaluation did not approach or exceed the FDOT NAC at Noise Sensitive Area 1, Noise Sensitive Area 2, Noise Sensitive Area 3, and Noise Sensitive Area 5; therefore, potential noise abatement measures were not evaluated.

Potential noise abatement measures were evaluated at one (1) location (Noise Sensitive Area 4) on the southeast side of the study corridor west of Selvitz Road. Potential noise barrier placement (BW-1S) was evaluated for the residential dwellings identified as R84S and R85S. Additionally, two (2) neighboring residential dwellings (R84AS and R85AS) were also evaluated. The impacted (benefitted) receptors include three (3) residential dwellings. Additionally, a single residential dwelling was not impacted; however, it was benefitted by the computer modeled noise barrier (BW-1S).

A noise barrier approximately 500 feet long and 10 Feet high was determined to meet the Department's feasibility factor (Noise Reduction Factor) and reasonableness factor (Noise Reduction Design Goal). The cost of the noise barrier is approximately $\$ 150,000.00$. The cost per benefitted receptor is approximately $\$ 37,500.00$. The cost of the noise barrier meets the Department's cost reasonableness of $\$ 42,000.00$ per benefitted receptor.

The roadway improvements will result in two (2) additional travel lanes and an alignment shift to the south of the existing corridor which will result in a noticeable noise level increase at some locations for the alternative year conditions evaluated.

There are no other noise sensitive areas located within the project corridor as of the date of this report and was verified through an active building permit request. There are no other noise sources located adjacent to the study corridor which could interfere with the existing ambient highway traffic noise levels with the exception of the industrial site between Glades Cut Off Road and NW East Torino Parkway.

There are no other noise sources within the vicinity of this project that could potentially interfere with the predicted sound levels within the limits of the study corridor.

## Statement of Likelihood

"The Florida Department of Transportation is committed to the construction of feasible and reasonable noise abatement measures at the noise-impacted locations identified in Table 5 and Appendix C, Figure 3 contingent upon the following conditions."

1. Detailed noise analyses during the final design process support the need, feasibility and reasonableness of providing abatement.
2. Cost analysis indicates that the cost of the noise barrier(s) will not exceed the cost reasonable criterion.
3. Community input supporting types, heights, and locations of the noise barrier(s) is provided to the District Office.
4. Safety and engineering aspects as related to the roadway user and the adjacent property owner have been reviewed and any conflicts or issues have been resolved.

### 8.0 CONSTRUCTION NOISE AND VIBRATION

The study corridor is situated in a medium densely populated area, with the majority of the noise sensitive locations being comprised of residential areas bordering the south side of the roadway. There are limited residential areas on the north side of the roadway. Additionally, New Horizons (medical treatment facility) is located on the north side of the roadway. This location may require special noise and vibration control consideration during the construction process. Special consideration to these areas as it relates to ground borne vibration impacts may also be necessary.

The noise sensitive locations are depicted in the noise receptor aerials presented in Appendix C. Noise and vibration impacts may occur due to movement and operation of heavy equipment and construction activities.

Noise control measures will include those contained in FDOT Standard Specifications for Road and Bridge Construction (5). Special consideration may be required to minimize noise and vibration impacts resulting from the expected bridge construction process.

These considerations could include any of the following: limitations on the construction activities, temporary noise abatement structures around noisy equipment, and methods to measure and reduce ground borne vibration impacts.

A list of typical construction noise and vibration sensitive sites can be found on page 17-46 of Chapter 17 (Topic No. 650-000-001, July 27, 2016). A summary of potential noise and vibration sensitive sites has been provided in Appendix E.

An assessment of these sites should take place prior to construction to mitigate potential impacts. Section 335.02, Florida Statutes, in 2003, exempts FDOT from compliance with local ordinances. However, FDOT policy is to follow the requirement of local ordinances to the extent that it is reasonable. If unanticipated noise and / or vibration issues arise during the construction process, the Project Engineer, in concert with the District Noise Specialist and the Contractor, may investigate additional methods of controlling these impacts on a case by case basis.

### 9.0 COMMUNITY COORDINATION

A copy of the Noise Study Report should be submitted to the appropriate local planning / zoning officials for their use in land use control once the Location and Design Concept Acceptance (LDCA) occurs. To assist local planning officials, the distances to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contours were estimated by evaluating the results of the computer modeled receptor location(s) identified in this analysis. The $66 \mathrm{~dB}(\mathrm{~A})$ noise contour delineates the distance from the closest edge of the travel lane that an approach of the NAC for Activity Category B and Category C is expected to occur for the 2040 design year traffic condition. This study has identified that Activity Category B and C locations were present under the existing study corridor conditions. For Build Alternative 2, the estimated distance from the closest edge of the travel lane to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contour is approximately 134 feet from Glades Cut Off Road to NW East Torino Parkway. The estimated distance from the closest edge of the travel lane to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contour is approximately 126 feet from NW East Torino Parkway to NW Milner Drive. The estimated distance from the closest edge of the travel lane to the 66 $\mathrm{dB}(\mathrm{A})$ noise contour is approximately 96.5 feet to 101 feet from NW Milner Drive to NW Rugby Drive. The estimated distance from the closest edge of the travel lane to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contour is approximately 105 feet from NW Rugby Drive to Selvitz Road. On the north side of the corridor the estimated distance from the closest edge of the travel lane to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contour is approximately 120 feet from Selvitz Road to NW Milner Drive.

The set-back distances referenced above account only for the traffic noise associated with the Midway Road study corridor and do not take into consideration the noise levels associated with other noise sources. The noise contours are depicted on the noise receptor aerials presented in Appendix C. The noise contour table is presented in Appendix F.

Further, the distances to the $66 \mathrm{~dB}(\mathrm{~A})$ noise contours do not consider the effects of shielding from adjacent buildings, significant changes in roadway elevation, unusual topographic features, abnormal atmospheric conditions, or local traffic volumes from adjacent roadways.

Each of these factors could either increase or decrease the estimated distance to the 66 $\mathrm{dB}(\mathrm{A})$ noise contours. Therefore, the setback distances shown in Appendix F are approximate values and should be considered as general guidance information.

### 10.0 REFERENCES

1. Procedures for Abatement of Highway Traffic Noise and Construction Noise; FHWA; April 2001.
2. FDOT PD\&E Manual, Part 2, Chapter 17 (Noise Policy); FDOT; Tallahassee, Florida; July 27, 2016.
3. The Traffic Noise Modeling and Analysis Practitioners Handbook; FDOT; Tallahassee, Florida; January 1, 2016.
4. Measurement of Highway-Related Noise (FHWA-PD-96-046); FHWA; May 1996.
5. Standard Specifications for Road and Bridge Construction; FDOT; Tallahassee, Florida; 2013.

## APPENDIX A PROPOSED TYPICAL SECTIONS

## ALTERNATIVE 1 - CANAL AVOIDANCE

## URBAN 4 LANE WITH 7ft BUFFERED BIKE LANE



| FDOT | Midway Rd. (CR 712) <br> from Glades Cut Off Road to Selvitz Road St. Lucie County, Florida Financial Project ID: 231440-3-22-01 ETDM No. 14177 <br> ETOMNo. 1417 | ALTERNATIVE 1 <br> TYPICAL SECTION |
| :---: | :---: | :---: |



| ALTERNATIVE 2 |
| :--- |

## APPENDIX B

## TRAFFIC DATA FOR NOISE STUDY



| Existing Facility |  |  | $\begin{aligned} & \text { D: } \\ & \text { T24= } \end{aligned}$ | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 12.1 | \% of 24 Hour Volume \% of Design Hour Volume |
| Year | 2015 |  | Tpeak= | 6.1 |  |
|  |  |  | MT= | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: | 1,805 | One-Way Two-Way | HT= | 2.3 | \% of Design Hour Volume |
| Demand Peak Hour Volume: | 1,440 |  | $\mathrm{B}=$ | 0.3 | \% of Design Hour Volume |
| Posted Speed: | 45 |  | $\mathrm{MC}=$ | 0.2 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak= <br> MT= | 51.0 | \% <br> \% of 24 Hour Volume \% of Design Hour Volume $\%$ of Design Hour Volume \% of Design Hour Volume \% of Design Hour Volume \% of Design Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 12.1 |  |
| Year | 2040 |  |  | 6.1 |  |
|  |  |  |  | 0.8 |  |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 1,805 | One-Way Two-Way | $\mathrm{HT}=$ | 2.3 |  |
|  | 3,258 |  | $\mathrm{B}=$ | 0.3 |  |
|  | 45 |  | $\mathrm{MC}=$ | 0.2 |  |


| Build Alternative (Design Year): |  |  | D; | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 12.1 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 6.1 | \% of Design Hour Volume |
|  |  | One-Way Two-Way | $\mathrm{MT}=$ | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 1,805 |  | $\mathrm{HT}=$ | 2.3 | \% of Design Hour Volume |
|  | 3,258 |  | $\mathrm{B}=$ | 0.3 | \% of Design Hour Volume |
|  | 45 |  | MC= | 0.2 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.
Prepared By:


Date: $\qquad$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.
FDOT Reviewer: $\qquad$ Date: $\qquad$

| Federal Aid Numbers(s): |  |
| :--- | :--- |
| FPID Number(s): |  |
| State/Federal Route No.: |  |
| Road Name: |  |
| Project Description: CR 712/Midway Road <br> Segment Description: PD\&E Services for CR 712/Midway Road from Glades Cut Off Road to Selvitz Road in St. Lucie County <br> Section Number:  <br> Mile Post To/From:  Glades Cut-off Road to E Torino Parkway |  |


| Existing Facility |  |  | $\begin{aligned} & \mathrm{D}: \\ & \mathrm{T} 24= \end{aligned}$ | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One-Way Two-Way |  | 19.5 | \% of 24 Hour Volume \% of Design Hour Volume <br> \% of Design Hour Volume |
| Year | 2015 |  | Tpeak= | 9.8 |  |
|  |  |  | $\mathrm{MT}=$ | 1.8 |  |
| LOS C Peak Hour Directional Volume: | 750 |  | $H T=$ | 1.4 | \% of Design Hour Volume |
| Demand Peak Hour Volume: | 1,593 |  | $B=$ | 0.6 | \% of Design Hour Volume |
| Posted Speed: | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak= <br> MT= | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 19.5 | \% of 24 Hour Volume |
| Year | 2040 |  |  | 9.8 | \% of Design Hour Volume |
|  |  |  |  | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 750 | One-Way Two-Way | $\mathrm{HT}=$ | 1.4 | \% of Design Hour Volume |
|  | 3,600 |  | $\mathrm{B}=$ | 0,6 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 19.5 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 9.8 | \% of Design Hour Volume |
|  |  |  | MT= | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 2,005 | One-Way Two-Way | $\mathrm{HT}=$ | 1.4 | \% of Design Hour Volume |
|  | 3,600 |  | $\mathrm{B}=$ | 0.6 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.


Date: $\qquad$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer: $\qquad$ Date: $\qquad$
Print Name
Signature
Federal Aid Numbers(s):
FPID Number(s):
State/Federal Route No.:
Road Name:
Project Description: Segment Description: Section Number: Mile Post To/From:

| 23144032201 |
| :--- |
| CR 712/Midway Road |
| PD\&E Services for CR 712/Midway Road from Glades Cut Off Road to Selvitz Road in St. Lucie County |
|  |
| E Torino Parkway to NW Milner Drive/Jenkins Road |


| Existing Facility |  |  | D: <br> T24= <br> Tpeak $=$ <br> MT= | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 19.5 | \% of 24 Hour Volume |
| Year | 2015 |  |  | 9.8 | \% of Design Hour Volume |
|  |  |  |  | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 750 | One-Way Two-Way | $H \mathrm{~T}=$ | 1.4 | \% of Design Hour Volume |
|  | 1,575 |  | $\mathrm{B}=$ | 0.6 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  | D: | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 19.5 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 9.8 | \% of Design Hour Volume |
|  |  |  | MT= | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 750 | One-Way <br> Two-Way | $H T=$ | 1.4 | \% of Design Hour Volume |
|  | 3,564 |  | $B=$ | 0.6 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: | 56.3 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 19.5 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 9.8 | \% of Design Hour Volume |
|  |  |  | MT= | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 1,910 | One-Way <br> Two-Way | $H T=$ | 1.4 | \% of Design Hour Volume |
|  | 3,564 |  | $\mathrm{B}=$ | 0.6 | \% of Design Hour Volume |
|  | 45 |  | MC= | 2.1 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.


Date: $\qquad$ a/1u/16
ate:
$\qquad$


| Existing Facility |  |  | $\begin{aligned} & \mathrm{D}: \\ & \mathrm{T} 24= \end{aligned}$ | 51.0 | $] \%$ <br> \% of 24 Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 41.8 |  |
| Year | 2015 |  |  | 20.9 | \% of Design Hour Volume |
|  |  |  | MT= | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: | 750 | One-Way | $H T=$ | 1.4 | \% of Design Hour Volume |
| Demand Peak Hour Volume: | 1,575 | Two-Way | $\mathrm{B}=$ | 0.6 | \% of Design Hour Volume |
| Posted Speed: | 45 |  | $M C=$ | 2.1 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak $=$ | 51.0 | \% <br> \% of 24 Hour Volume \% of Design Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 41.8 |  |
| Year | 2040 |  |  | 20.9 |  |
|  |  |  |  | 1.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: <br> Demand Peak Hour Volume: <br> Posted Speed: | 750 | One-Way Two-Way | HT= | 1.4 | \% of Design Hour Volume |
|  | 2,781 |  | $B=$ | 0.6 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 2.1 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Date: $\qquad$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer: $\qquad$ Date: $\qquad$
Print Name
Signature


| Existing Facility |  |  |  |
| :--- | :--- | :--- | :--- |


| No Build Alternative (Design Year): |  |  | $\begin{aligned} & \mathrm{D}: \\ & \mathrm{T} 24= \end{aligned}$ | 51.0 | \% of 24 Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8.9 |  |
| Year | 2040 |  | Tpeak= | 4.5 | \% of Design Hour Volume |
|  |  |  | MT= | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: | 2,005 | One-Way | $\mathrm{HT}=$ | 0.8 | \% of Design Hour Volume |
| Demand Peak Hour Volume: | 2,223 | Two-Way | $\mathrm{B}=$ | 0.5 | \% of Design Hour Volume |
| Posted Speed: | 45 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 8.9 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 4.5 | \% of Design Hour Volume |
|  |  |  | MT= | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 2,005 | One-Way Two-Way | $H T=$ | 0.8 | \% of Design Hour Volume |
|  | 2,223 |  | $\mathrm{B}=$ | 0.5 | \% of Design Hour Volume |
|  | 45 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.
Prepared By:


Date: $\qquad$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

|  |
| :---: |
| Print Name |

Date: $\qquad$
Print Name
Signature


| Existing Facility |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24 $=$ | 41.8 | \% of 24 Hour Volume |
| Year | 2015 |  | Tpeak= | 20.9 | \% of Design Hour Volume |
|  |  |  | MT= | 0.4 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 333 | One-Way Two-Way | $H T=$ | 0.7 | \% of Design Hour Volume |
|  | 513 |  | $\mathrm{B}=$ | 0.3 | \% of Design Hour Volume |
|  | 30 |  | MC= | 0.2 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  |  |
| :--- | :--- | :--- | :--- |


| Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak= | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | One-Way Two-Way |  | 41.8 |  |
| Year | 2040 |  |  | 20.9 | \% of Design Hour Volume |
|  |  |  |  | 0.4 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: | 333 |  | HT= | 0.7 | \% of Design Hour Volume |
| Demand Peak Hour Volume: | 990 |  | $\mathrm{B}=$ | 0.3 | \% of Design Hour Volume |
| Posted Speed: | 30 |  | $\mathrm{MC}=$ | 0.2 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.
Prepared By:


Date: $\qquad$
Date:

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:

|  |
| :---: |
| Print Name |

Date: $\qquad$


| Existing Facility |  |  |  |
| :--- | :--- | :--- | :--- |


| No Build Alternative (Design Year): |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 27.2 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 13.6 | \% of Design Hour Volume |
|  |  |  | MT= | 0.4 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 784 | One-Way Two-Way | $H \mathrm{~T}=$ | 0.7 | \% of Design Hour Volume |
|  | 1,953 |  | $B=$ | 0.3 | \% of Design Hour Volume |
|  | 50 |  | $\mathrm{MC}=$ | 0.2 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 27.2 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 13.6 | \% of Design Hour Volume |
|  |  |  | MT= | 0.4 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed; | 784 | One-Way Two-Way | $\mathrm{HT}=$ | 0.7 | \% of Design Hour Volume |
|  | 1,953 |  | $\mathrm{B}=$ | 0.3 | \% of Design Hour Volume |
|  | 50 |  | $\mathrm{MC}=$ | 0.2 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.


I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:
Date: $\qquad$


| Existing Facility |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 4.9 | \% of 24 Hour Volume |
| Year | 2015 |  | Tpeak= | 2.5 | \% of Design Hour Volume |
|  |  |  | $\mathrm{MT}=$ | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 664 | One-Way Two-Way | HT= | 0.8 | \% of Design Hour Volume |
|  | 576 |  | $\mathrm{B}=$ | 0.5 | \% of Design Hour Volume |
|  | 40 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |


| No Build Alternative (Design Year): |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24= | 4.9 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 2.5 | \% of Design Hour Volume |
|  |  |  | MT= | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: <br> Posted Speed: | 664 | One-Way Two-Way | $H \mathrm{~T}=$ | 0.8 | \% of Design Hour Volume |
|  | 810 |  | $\mathrm{B}=$ | 0.5 | \% of Design Hour Volume |
|  | 40 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak $=$ <br> MT= | 51.0 | \% <br> \% of 24 Hour Volume \% of Design Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 4.9 |  |
| Year | 2040 |  |  | 2.5 |  |
|  |  |  |  | 0.8 |  |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 664 | One-Way Two-Way | $H T=$ | 0.8 | \% of Design Hour Volume |
|  | 810 |  | $\mathrm{B}=$ | 0.5 | \% of Design Hour Volume |
|  | 40 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.


I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

FDOT Reviewer:
Date: $\qquad$

| Federal Aid Numbers(s):FPID Number(s): |  |
| :---: | :---: |
|  | 23144032201 |
| State/Federal Route No.: |  |
| Road Name: | Selvitz Road |
| Project Description: | PD\&E Services for CR 712/Midway Road from Glades Cut Off Road to Selvitz Road in St. Lucie County |
| Segment Description: |  |
| Section Number: |  |
| Mile Post To/From: | South of Midway Road |


| Existing Facility |  |  |  |
| :--- | :--- | :--- | :--- |


| No Build Alternative (Design Year): |  |  | D: | 51.0 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | T24 $=$ | 4.9 | \% of 24 Hour Volume |
| Year | 2040 |  | Tpeak= | 2.5 | \% of Design Hour Volume |
|  |  |  | MT= | 0.8 | \% of Design Hour Volume |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 296 | One-Way Two-Way | $H T=$ | 0.8 | \% of Design Hour Volume |
|  | 1,026 |  | $B=$ | 0.5 | \% of Design Hour Volume |
|  | 30 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |


| Build Alternative (Design Year): |  |  | D: <br> T24= <br> Tpeak $=$ <br> MT= | 51.0 | $\%$ <br> \% of 24 Hour Volume \% of Design Hour Volume |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 4.9 |  |
| Year | 2040 |  |  | 2.5 |  |
|  |  |  |  | 0.8 |  |
| LOS C Peak Hour Directional Volume: Demand Peak Hour Volume: Posted Speed: | 296 | One-Way Two-Way | $H T=$ | 0.8 | \% of Design Hour Volume |
|  | 1,026 |  | $B=$ | 0.5 | \% of Design Hour Volume |
|  | 30 |  | $\mathrm{MC}=$ | 0.4 | \% of Design Hour Volume |

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.


Date: $9 / 10 / 10$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis.

## FDOT Reviewer:

Print Name

Date: $\qquad$

Midway Road Peak Hour Traffic Volumes For TNM 2.5 Model


Glades Cut Off Rd. Peak Hour Traffic Volumes For TNM 2.5 Model

|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 2040 Condition |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 129 VPH | Cars = 125 |  | 784 VPH | Cars = 772 |  | 784 VPH | Cars = 772\| |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=1$ |  | LOS C | $\mathrm{MT}=3$ |  | LOS C | $\mathrm{MT}=3$ |  |  |  |  |  |
|  |  | $\mathrm{HT}=1$ |  | 1-Way | $\mathrm{HT}=\quad 5$ |  | 1-Way | $\mathrm{HT}=\quad 5$ |  |  |  |  |  |
|  |  | BUS = 1 |  |  | $\mathrm{MT}=12$ |  |  | $\mathrm{MT}=2$ |  |  |  |  |  |
|  |  | $\mathrm{MC}=1$ |  |  | $\mathrm{MC}=12$ |  |  | $\mathrm{MC}=12$ |  |  |  |  |  |
|  |  | 50 MPH |  |  | 50 MPH |  |  | 50 MPH |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 2040 Condition |  |  |  |  |  |  |
|  | 262 VPH | Cars = 257 |  | 333 VPH | Cars = 328 |  | 333 VPH | Cars = 328\| |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=1$ |  | LOS C | $\mathrm{MT}=1$ |  | LOS C | $\mathrm{MT}=1$ |  |  |  |  |  |
|  |  | HT= 2 |  | 1-Way | $\mathrm{HT}=12$ |  | 1-Way | $\mathrm{HT}=\quad 2$ |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS $=1$ |  |  | BUS = 1 |  |  |  |  |  |
|  |  | MC = 1 1 |  |  | MC = 1 |  |  | MC = 1 |  |  |  |  |  |
|  |  | 30 MPH |  |  | 30 MPH |  |  | 30 MPH |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 22040 Condition |  |  |  |  |  |  |
|  | 251 VPH | Cars = 246\| |  | 333 VPH | Cars = 328\| |  | 333 VPH | Cars = 328\| |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=1$ |  | LOS C | $\mathrm{MT}=1$ |  | LOS C | $\mathrm{MT}=1$ |  |  |  |  |  |
|  |  | $\mathrm{HT}=12$ |  | 1-Way | $\mathrm{HT}=12$ |  | 1-Way | $\mathrm{HT}=12$ |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS $=1$ |  |  | BUS = 1 |  |  |  |  |  |
|  |  | MC = 1 1 |  |  | MC = 1 |  |  | MC = 1 |  |  |  |  |  |
|  |  | 30 MPH |  |  | 30 MPH |  |  | 30 MPH |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 22040 Condition |  |  |  |  |  |  |
| O | 123 VPH | Cars = 119 |  | 784 VPH | Cars = 772 |  | 784 VPH | Cars = 772\| |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=1$ |  | LOS C | MT = 3 |  | LOS C | $\mathrm{MT}=3$ |  |  |  |  |  |
|  |  | HT= |  | 1-Way | $\mathrm{HT}=\quad 5$ |  | 1-Way | $\mathrm{HT}=\quad 5$ |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | $\mathrm{MT}=12$ |  |  | $\mathrm{MT}=12$ |  |  |  |  |  |
|  |  | MC = 1 1 |  |  | MC = 2 |  |  | $\mathrm{MC}=12$ |  |  |  |  |  |
|  |  | 50 MPH |  |  | 50 MPH |  |  | 50 MPH |  |  |  |  |  |


|  | Selvitz Road Peak Hour Traffic Volumes For TNM 2.5 Model |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 202040 Condition |  |  |  |  |  |  |  |
|  | 296 VPH | Cars = 290 |  | 296 VPH | Cars = 290 |  | 296 VPH | Cars = | 290 |  |  |  |  |  |
|  | LOS C | MT $=$ |  | LOS C | $\mathrm{MT}=12$ |  | LOS C | MT = | 2 |  |  |  |  |  |
|  | 1-Way | HT= |  | 1-Way | $\mathrm{HT}=12$ |  | 1-Way | $\mathrm{HT}=$ | 2 |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS $=1$ |  |  | BUS = | 1 |  |  |  |  |  |
|  |  | MC = 1 |  |  | $\mathrm{MC}=1$ |  |  | $\mathrm{MC}=$ | 1 |  |  |  |  |  |
|  |  | 30 MPH |  |  | 30 MPH |  |  | 30 MPH |  |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 2040 Condition |  |  |  |  |  |  |  |
|  | 282 VPH | Cars = 276\| |  | 397 VPH | Cars = 387 |  | 397 VPH | Cars = | 387 |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=12$ |  | Demand | $\mathrm{MT}=$ |  | Demand | MT = | 3 |  |  |  |  |  |
|  |  | $\mathrm{HT}=12$ |  |  | $\mathrm{HT}=3$ |  |  | $\mathrm{HT}=$ | 3 |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS $=12$ |  |  | BUS = | 2 |  |  |  |  |  |
|  |  | $\mathrm{MC}=1$ |  |  | $\mathrm{MC}=12$ |  |  | MC = | 2 |  |  |  |  |  |
|  |  | 40 MPH |  |  | 40 MPH |  |  | 40 MPH |  |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 2040 Condition |  |  |  |  |  |  |  |
|  | 294 VPH | Cars = 288\| |  | 413 VPH | Cars = 403\| |  | 413 VPH | Cars = | 403\| |  |  |  |  |  |
|  | Demand | $\mathrm{MT}=12$ |  | Demand | $\mathrm{MT}=3$ |  | Demand | MT = | 3 |  |  |  |  |  |
|  |  | $\mathrm{HT}=02$ |  |  | $\mathrm{HT}=3$ |  |  | $\mathrm{HT}=$ | 3 |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS = 2 |  |  | BUS = | 2 |  |  |  |  |  |
|  |  | $\mathrm{MC}=1$ |  |  | $\mathrm{MC}=12$ |  |  | MC = | 2 |  |  |  |  |  |
|  |  | 40 MPH |  |  | 40 MPH |  |  | 40 MPH |  |  |  |  |  |  |
|  | Existing Year 2015 Condition |  |  | No Build Alternative 2040 Condition |  |  | Build Alternative 2040 Condition |  |  |  |  |  |  |  |
|  | 296 VPH | Cars = 290\| |  | 296 VPH | Cars = 290\| |  | 296 VPH | Cars = | 290 |  |  |  |  |  |
|  | LOS C | $\mathrm{MT}=12$ |  | LOS C | $\mathrm{MT}=12$ |  | LOS C | MT = | 2 |  |  |  |  |  |
|  | 1-Way | $\mathrm{HT}=12$ |  | 1-Way | $\mathrm{HT}=12$ |  | 1-Way | HT= | 2 |  |  |  |  |  |
|  |  | BUS $=1$ |  |  | BUS $=1$ |  |  | BUS = | 1 |  |  |  |  |  |
|  |  | MC = 1 |  |  | MC = 1 1 |  |  | MC = | 1 |  |  |  |  |  |
|  |  | 30 MPH |  |  | 30 MPH |  |  | 30 MPH |  |  |  |  |  |  |

## APPENDIX C NOISE RECEPTOR AERIALS





## APPENDIX D NOISE MEASUREMENT DATA SHEETS

$\frac{\text { Date: } 06 / 30 / 2016}{\text { LD } 002}$

Measurement Taken By: Bernard Kinney Jr., INCE
LD 002
Project: Midway Road / CR 712 Bridge \# 940050 FPID \# 231440-3-22-01

| Site ID: ML1 North Piper Circle Residential Area |  |  |  |  |  | $\mathrm{E} / \mathrm{P}=22 \mathrm{Ft} . \mathrm{EBL}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAT= $2722.466^{\prime}$ |  |  | LONG $=-8023.160^{\prime}$ |  |  |  | Elevation= | 28.5' |
| Weather Conditions: | Clear: | Partly Cloudy: | X | Cloudy: |  | Other: |  |  |
| Temperature: | Start: | 91.5 | End: | 93.1 | ( ${ }^{\text {F }}$ ) |  |  |  |
| Wind Direction: | Start: | NW 313 | End: | NW 316 |  |  |  |  |
| Wind Speed (Start): | Min: | 0.0 | Max: | 1.5 | Average: | 1.0 | (mph) |  |
| Wind Speed (End): | Min: | 0.0 | Max: | 1.5 | Average: | 0.7 | (mph) |  |
| Humidity: | Start: | 56.0 | End: | 58.8 | (\%) |  |  |  |


| Equipment Data |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sound Level Meter: | Larson Davis 831-Type 1 |  | Serial Number: 0004153 |  |  |
| Date of Last Traceab |  |  |  |  |  |
| Calibration: | Start: 114.00 | End: | 114.00 | Difference: | 0.00 |
| Battery: | Start: $5.2 \mathrm{~V} \quad 77.5 \%$ | End: $5.1 \mathrm{~V} \quad 70.9$ \% |  |  |  |
| Weighting Scale: | A | Response: Slow |  |  |  |
| Calibrator: Larso | Davis CAL 200 |  |  | er: 8533 |  |

Results: Leq: 72.6
in dB(A)
Major Noise Sources: Midway Road Traffic

Background Noise Sources: Cement Plant
Other Notes/Observations:

| Vehicle Types | EB Direction |  | WB Direction |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | Speed | Volume | Speed | Volume | Speed |
| Auto | 366 | 41 | 408 | 43 |  |  |
| Medium Truck | 30 | 40 | 30 | 40 |  |  |
| Heavy Truck | 54 | 41 | 24 | 36 |  |  |
| Bus | 0 | 0 | 0 | 0 |  |  |
| Motorcycle | 0 | 0 | 0 | 0 |  |  |

Site Sketch

$\frac{\text { Date: } 06 / 30 / 2016}{\text { LD } 003}$

Measurement Taken By: Bernard Kinney Jr., INCE
LD 003
Project: Midway Road / CR 712 Bridge \# 940050 FPID \# 231440-3-22-01

| Site ID: ML1 North Piper Circle Residential Area |  |  |  |  |  | $\mathrm{E} / \mathrm{P}=22 \mathrm{Ft} . \quad \mathrm{EBL}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAT= $2722.465^{\prime}$ |  | LONG $=-8023.160^{\prime}$ |  |  |  |  | Elevation= | $37.4{ }^{\prime}$ |
| Weather Conditions: | Clear: | Partly Cloudy: | X | Cloudy: |  | Other: |  |  |
| Temperature: | Start: | 94.8 | End: | 96.2 | ( ${ }^{\circ}$ ) |  |  |  |
| Wind Direction: | Start: | NW 314 | End: | NW 324 |  |  |  |  |
| Wind Speed (Start): | Min: | 0.0 | Max: | 1.2 | Average: | 0.8 | (mph) |  |
| Wind Speed (End): | Min: | 0.0 | Max: | 0.9 | Average: | 0.2 | (mph) |  |
| Humidity: | Start: | 56.4 | End: | 57.9 | (\%) |  |  |  |



| Results: Leq: 72.6 <br> in dB(A) |
| :--- |
| Major Noise Sources: Midway Road Traffic |
| Background Noise Sources: Cement Plant |
| Other Notes/Observations: |

Other Notes/Observations:

| Vehicle Types | EB Direction |  | WB Direction |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | Speed | Volume | Speed | Volume | Speed |
| Auto | 456 | 44 | 420 | 42 |  |  |
| Medium Truck | 12 | 37 | 24 | 43 |  |  |
| Heavy Truck | 6 | 33 | 24 | 43 |  |  |
| Bus | 0 | 0 | 12 | 42 |  |  |
| Motorcycle | 0 | 0 | 6 | 30 |  |  |

Site Sketch

$\frac{\text { Date: } 07 / 01 / 2016}{\text { LD } 001}$
Measurement Taken By: Bernard Kinney Jr., INCE

LD 001
Project: Midway Road / CR 712 Bridge \# 940050 FPID \# 231440-3-22-01

| Site ID: ML3 Post O | Office | Residential Area |  |  |  | $\mathrm{E} / \mathrm{P}=30 \mathrm{Ft} . \mathrm{EBL}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAT= 27 22.461' |  |  | LONG $=-8022.458^{\prime}$ |  |  |  | Elevation $=38.7^{\prime}$ |
| Weather Conditions: | Clear: | Partly Cloudy: | X | Cloudy: |  | Other: |  |
| Temperature: | Start: | 91.2 | End: | 87.9 | $\left({ }^{\circ} \mathrm{F}\right)$ |  |  |
| Wind Direction: | Start: | NW 315 | End: | NW 317 |  |  | (mph) |
| Wind Speed (Start): | Min: | 0.0 | Max: | 3.6 | Average: | 2.8 |  |
| Wind Speed (End): | Min: | 0.0 | Max: | 1.3 | Average: | 0.9 | (mph) |
| Humidity: | Start: | 64.6 | End: | 66.2 | (\%) |  |  |


| Equipment Data |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sound Level Meter: | Larson Davis 831-Type 1 |  |  | Serial Number: | r: 0004153 |
| Date of Last Traceable Calibration: SLM 4/7/16 PRM 831 4/6/16 MIC 4/7/16 CAL 200 10/ |  |  |  |  |  |
| Calibration: | Start: 114.00 | End: | 114.00 | Difference: -0.0. | 0.01 |
| Battery: | Start: $5.7 \mathrm{~V} \quad 97.4 \%$ |  | 5.4 V |  |  |
| Weighting Scale: | A |  | Resp | Slow |  |
| Calibrator: Larson | Davis CAL 200 |  | Seria | er: 8533 |  |

Results: Leq: 70.8
in $\mathrm{dB}(\mathrm{A})$

Major Noise Sources: Midway Road Traffic
Background Noise Sources:
Other Notes/Observations:

| Vehicle Types | EB Direction |  | WB Direction |  |  | Speed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | Speed | Volume | Volume | Speed |  |
| Auto | 624 | 42 | 492 | 44 |  |  |
| Medium Truck | 30 | 40 | 18 | 39 |  |  |
| Heavy Truck | 18 | 36 | 30 | 44 |  |  |
| Bus | 0 | 0 | 0 | 0 |  |  |
| Motorcycle | 6 | 39 | 0 | 0 |  |  |

Site Sketch

$\frac{\text { Date: } 07 / 01 / 2016}{\text { LD } 002}$

Measurement Taken By: Bernard Kinney Jr., INCE
LD 002
Project: Midway Road / CR 712 Bridge \# 940050 FPID \# 231440-3-22-01

| Site ID: ML3 Post O | Office | Residential Area |  |  |  | $\mathrm{E} / \mathrm{P}=30 \mathrm{Ft} . \quad \mathrm{EBL}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAT= $2722.461^{\prime}$ |  |  | LONG $=-8022.458^{\prime}$ |  |  |  | Elevation $=47.6^{\prime}$ |
| Weather Conditions: | Clear: | Partly Cloudy: | X | Cloudy: |  | Other: |  |
| Temperature: | Start: | 90.0 | End: | 92.4 | ( ${ }^{\text {F }}$ ) |  |  |
| Wind Direction: | Start: | NW 312 | End: | NW 310 |  |  |  |
| Wind Speed (Start): | Min: | 0.0 | Max: | 3.0 | Average: | 2.1 | (mph) |
| Wind Speed (End): | Min: | 0.0 | Max: | 4.1 | Average: | 2.7 | (mph) |
| Humidity: | Start: | 67.8 | End: | 60.4 | (\%) |  |  |


Results: Leq: 70.5
in dB(A)
Major Noise Sources: Midway Road Traffic

Background Noise Sources:
Other Notes/Observations:

| Vehicle Types | EB Direction |  | WB Direction |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | Speed | Volume | Speed | Volume | Speed |
| Auto | 492 | 46 | 456 | 46 |  |  |
| Medium Truck | 24 | 40 | 24 | 44 |  |  |
| Heavy Truck | 36 | 44 | 18 | 43 |  |  |
| Bus | 6 | 37 | 0 | 0 |  |  |
| Motorcycle | 0 | 0 | 0 | 0 |  |  |

Site Sketch

$\frac{\text { Date: } 07 / 01 / 2016}{\text { LD } 003}$

Measurement Taken By: Bernard Kinney Jr., INCE
LD 003
Project: Midway Road / CR 712 Bridge \# 940050 FPID \# 231440-3-22-01

| Site ID: ML3 Post O | Office / | Residential Area |  |  |  | $\mathrm{E} / \mathrm{P}=30 \mathrm{Ft} . \quad \mathrm{EBL}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAT= $2722.458^{\prime}$ |  |  | LONG $=-8022.457^{\prime}$ |  |  |  | Elevation $=10.8{ }^{\prime}$ |
| Weather Conditions: | Clear: | Partly Cloudy: | X | Cloudy: |  | Other: |  |
| Temperature: | Start: | 92.3 | End: | 92.0 | ( ${ }^{\text {F }}$ ) |  |  |
| Wind Direction: | Start: | NW 315 | End: | NW 316 |  |  |  |
| Wind Speed (Start): | Min: | 0.0 | Max: | 4.7 | Average: | 2.9 | (mph) |
| Wind Speed (End): | Min: | 0.0 | Max: | 2.4 | Average: | 1.4 | (mph) |
| Humidity: | Start: | 60.3 | End: | 60.2 | (\%) |  |  |


| Equipment Data |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sound Level Meter: | Larson Davis 831-Type 1 |  | Serial Number: 0004153 |  |  |
| Date of Last Traceable Calibration: SLM 4/7/16 PRM 831 4/6/16 MIC 4/7/16 CAL 200 10/1/2 |  |  |  |  |  |
| Calibration: | Start: 114.00 | End: | 114.00 | Difference: | -0.03 |
| Battery: | Start: 5.1 V 68.3\% |  | 5.0 V |  |  |
| Weighting Scale: | A |  | Resp | Slow |  |
| Calibrator: Larson | Davis CAL 200 |  | Seria | er: 8533 |  |

Results: Leq: 70.6
in $\mathrm{dB}(\mathrm{A})$

Major Noise Sources: Midway Road Traffic
Background Noise Sources:

Other Notes/Observations:

| Vehicle Types | EB Direction |  | WB Direction |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | Speed | Volume | Speed | Volume | Speed |
| Auto | 612 | 40 | 642 | 41 |  |  |
| Medium Truck | 30 | 40 | 18 | 42 |  |  |
| Heavy Truck | 18 | 42 | 12 | 43 |  |  |
| Bus | 6 | 39 | 0 | 0 |  |  |
| Motorcycle | 0 | 0 | 0 | 0 |  |  |

Site Sketch


## APPENDIX E NOISE AND VIBRATION SENSITIVE SITES

## Construction Noise and Vibration Sensitive Sites (a partial listing of potential sites)

| Noise | Vibration |
| :---: | :---: |
| Eye Centers/Clinics | Eye Centers/Clinics |
| Medical Centers |  |
| Hospitals |  |
| Geriatric Centers | Medical Centers |
| Hospitals |  |
| Sound Recording Studios |  |
| TV/Radio Stations | Geriatric Centers |
| Residences | Sound Recording Studios |
| Technical Laboratories | TV/Radio Stations |
| Hearing Testing Centers | Residences |
| Theaters | Technical Laboratories |
| Schools | Antiques Shops |
| Motels/Hotels | Museums |
| Funeral Homes |  |
| Libraries | Historic Buildings |
| Meditation Centers |  |
| Churches/Shrines |  |
| Parks |  |
| Day Care Centers |  |
| Outdoor Theaters |  |
| Note: This list is not meant to be all inclusive or exclusive, but rather an indication of the type of sites likely to |  |
| be sensitive to construction noise and/or vibration. |  |
| Source: FDOT Noise and Vibration Task Team; August 17, 1999. |  |

## APPENDIX F NOISE CONTOUR TABLE

| Appendix FNoise ContoursMidway RoadFrom Glades Cut Off Road to Selvitz Road |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Roadway Segment | Activity Category | PDOT NAC dB(A) | Numberof Tavel Lanes | Distance from Closest Edge of Tavel Lane* | Altemative \# |
| Glades Cut Off Road to E. Torino Parkway | B | 66 | 4 | 134 Ft. South Side | 2 |
| E. Torino Parkway to NW Milner Drive | B | 66 | 4 | 126 Ft. South Side | 2 |
| NW Milner Drive to NW Rugby Drive | B | 66 | 4 | 96.5 Ft . to 101Ft. South Side | 2 |
| NW Rugby Drive to Selvitz Road | B | 66 | 4 | 105 Ft . South Side | 2 |
| Selvitz Road to NW Milner Drive | B, C | 66 | 4 | 120 Ft . North Side | 2 |

* Does not include the widths of the proposed bicycle lanes.

